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Motivation

Among the main science drivers, the 2015 P5 report identified the Higgs boson as a
new tool for discovery, the physics associated with neutrino mass, and the search for
unknown particles and interactions. The P5 panel recommends that such goals are
pursued through the completion of the high luminosity LHC (HL-LHC) upgrade program,
and the development of a short- and long-baseline neutrino program hosted at
Fermilab, which is based on Liquid Argon Time Projection Chamber detectors
(LArTPC). Both LHC and neutrino experiments need to reconstruct events that are
challenging, although their challenges are different in nature.

Current HEP processing model based on multi-author gigantic sequential C++ code is
not adequate for experiments with increasing detector sizes and accelerator intensities.
Enabling the efficient usage of modern compute architectures in HEP event
reconstruction is vital for achieving their physics goals.

Work

Fermilab and University of Oregon are accelerating HEP event reconstruction using
highly parallel architectures. We focus on the novel parallel algorithm for charged
particle tracking in CMS, and pioneer the usage of similar techniques for reconstruction
in LArTPC detectors. With the use of advanced profiling tools and development
techniques, including autotuning, the throughput of the algorithms on the leading
parallel architectures (Xeon Phi, GPU) will be maximized and portable implementations

for usage at supercomputers and with heterogenous platforms will be explored.

Goals of the project are the following:

1. ldentify key algorithms for physics outcome which are dominant contributions for
the experiments’ reconstruction workflows

2. Characterize and re-design the algorithm to make efficient usage of parallelism,
both at data- and instruction-level

3. Deploy the new code in the experiments’ framework

4. Explore execution on different architectures and platforms

Related Activities

Cornell/Princeton/UCSD collaboration: original authors of parallel tracking prototype for
CMS. Our project is working in close contact with this collaboration.

ASCR institutes: Rapids (Platform Readiness)

Other SciDAC projects: Hep.TrkX (tracking with ML)

HEP Experiments: LHC (CMS, Atlas), Neutrino experiments (DUNE, SBN)

CMS Expeanment at the LHC, CERN
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CMSSW integration and further optimizations in progress. o4 O

LArTPC Reconstruction

The problem:

Reconstruction in LArTPC neutrino
experiments is challenging due to
many possible neutrino topologies,
noise, contamination of cosmic rays.
Takes O(100) s/ev in MicroBooNE,
and future experiments will be much
bigger and on more intense beams.

NuMI DATA: RUN 10:¢

FeaS|b|I|ty StUdy: /\ | Pulse height vs time bin :%
Hit finding algorithm. el | N [ e e a8
1450 1500 1550 1600 1650

MicroBooNE'sTPC is made of ~8k wires readout at 2 MHz. Signal from charged
particles produces Gaussian pulses. Hit finding is the process of identifying such
pulses and determine its properties (peak position and width). Suitable for feasibility
study to demonstrate parallelism with LArTPC: wires can be processed independently.
Currently takes ~15% of the MicroBooNE reconstruction workflow.
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we will focus on identifying another
crucial algorithm. Options could be
upstream (signal processing) or
downstream (pattern recognition) in
the reconstruction chain with respect
to Hit finding.
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Typical reconstruction chain for LArTPC experiments
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