
Accelerating	HEP	Event	Reconstruction
Motivation

Among the main science drivers, the 2015 P5 report identified the Higgs boson as a
new tool for discovery, the physics associated with neutrino mass, and the search for
unknown particles and interactions. The P5 panel recommends that such goals are
pursued through the completion of the high luminosity LHC (HL-LHC) upgrade program,
and the development of a short- and long-baseline neutrino program hosted at
Fermilab, which is based on Liquid Argon Time Projection Chamber detectors
(LArTPC). Both LHC and neutrino experiments need to reconstruct events that are
challenging, although their challenges are different in nature.
Current HEP processing model based on multi-author gigantic sequential C++ code is
not adequate for experiments with increasing detector sizes and accelerator intensities.
Enabling the efficient usage of modern compute architectures in HEP event
reconstruction is vital for achieving their physics goals.

Work
Fermilab and University of Oregon are accelerating HEP event reconstruction using
highly parallel architectures. We focus on the novel parallel algorithm for charged
particle tracking in CMS, and pioneer the usage of similar techniques for reconstruction
in LArTPC detectors. With the use of advanced profiling tools and development
techniques, including autotuning, the throughput of the algorithms on the leading
parallel architectures (Xeon Phi, GPU) will be maximized and portable implementations
for usage at supercomputers and with heterogenous platforms will be explored.
Goals of the project are the following:
1. Identify key algorithms for physics outcome which are dominant contributions for

the experiments’ reconstruction workflows
2. Characterize and re-design the algorithm to make efficient usage of parallelism,

both at data- and instruction-level
3. Deploy the new code in the experiments’ framework
4. Explore execution on different architectures and platforms

Related	Activities
Cornell/Princeton/UCSD collaboration: original authors of parallel tracking prototype for
CMS. Our project is working in close contact with this collaboration.
ASCR institutes: Rapids (Platform Readiness)
Other SciDAC projects: Hep.TrkX (tracking with ML)
HEP Experiments: LHC (CMS, Atlas), Neutrino experiments (DUNE, SBN)

SciDAC-4	pilot	project	“HEP	Event	Reconstruction	
on	Cutting	Edge	Computing	Architectures”

Fermilab:	G.	Cerati,	A.	Hall,	M.	Wang
University	of	Oregon:	B.	Norris,	B.	Gravelle

CMS	Tracking LArTPC Reconstruction

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

Figure 3. Layout of a LArTPC experiment (from [UBooNE]).

All planned and running LArTPC experiments at Fermilab benefit of a common software
platform, LArSoft [LArSoft]. LArSoft is intended to include all functions necessary to facilitate
the creation and maintenance of a common software infrastructure for the reconstruction and
simulation of liquid argon based detectors. It is written in C++ and built on the ROOT data
analysis software [Root] and the art analysis framework [Art] supported by the Fermilab
Scientific Computing Division for intensity frontier experiments. LArSoft collects simulation
and reconstruction algorithms and provides a detector-independent visualization tool for
LArTPC experiments. The key elements of the LArSoft code are a set of
experiment-independent “detector interfaces” and data structures that allow algorithms to
retrieve detector properties and to input/output data products in an experiment-agnostic way.
Detector-related information are instead provided by software plugins maintained by each
experiment. Integrating our developments within LArSoft is a crucial step for this project;
clearly it will make our results directly available to all participating experiments, but it will also
expose the new technologies we will use to a wider community, thus helping the formation of
a new software development culture in the field.

Let us now describe the typical reconstruction workflow for LArTPC experiments (Fig. 4)
[Palamara]. The LArTPC technology is based on the continuous digitization and recording of
the signal from each wire of the two (or three) wire planes of the TPC. The purpose of the
reconstruction procedure of ionizing events in a LArTPC is to extract physical information
provided by the wire output signals from the multiple read-out planes, i.e. the energy
deposited by the different particles and the space coordinates where such a deposition has
occurred. All this allows to build a complete 3D and calorimetric picture of the event. The

10

offline event reconstruction procedure can be briefly summarized as a series of subsequent
steps:

1. Signal shaping and hit reconstruction: data from each wire is passed through a noise
filter, signal deconvolution, and calibration to translate raw signal pulses to nearly
uniform, unipolar signal pulses on each of the wires. TPC “hits” are identified as
Gaussian-like signals above the baseline readout waveforms, and carry information
on the wire and time of arrival of charge in the detector, as well as an (uncalibrated)
measure of the energy deposited in each hit.

2. Clustering, track and shower reconstruction: hits in each plane of wires are
processed by clustering algorithms which identify hits likely originating from the same
particle. 3D pattern-recognition and tracking algorithms then match these hits and
clusters across the three wire planes in the TPC to identify charged-particle
trajectories (“tracks”), interaction vertices, and showers of electromagnetic particles.

3. Calorimetric reconstruction and Particle Identification: the determination of the
energy release in LAr is performed by charge to energy conversion with correction for
the quenching effect on the ionization charge in LAr and correcting for the charge
loss due to the attachment by electronegative impurities diluted in LAr. Particle
identification is obtained from dE/dx measurement versus range.

Figure 4. Typical reconstruction workflow in LArTPC experiments.

MicroBooNE [UBooNE] is the only LArTPC neutrino experiment currently taking data and is
therefore the best reference for state-of-the-art reconstruction algorithms. As of today,
algorithms are not in a crystallized configuration yet, and the MicroBooNE reconstruction
group is in a very active development state, with multiple new solutions being investigated. A
key point to MicroBooNE’s reconstruction effort is that there is no unique way to do
reconstruction: reconstruction algorithms are highly modularized, and alternative algorithms
are used to reconstruct the same objects; the resulting performance depends on the
topology and different analyses make use of products from different algorithms. Algorithms
for shower reconstruction are still in an embryonal development stage [ShowerReco].
Excluding legacy reconstruction algorithms which will be soon deprecated, the typical
reconstruction time in MicroBooNE events is 2-3 minute per event on production machines
at Fermilab. As of today, there is not a single algorithm that is responsible for most of the
reconstruction time; significant contributions come from four algorithms, which we briefly
describe below. Further developments may both decrease (due to optimization) or increase
(due to the introduction of new algorithms) the total processing time.

1. GausHitFinder [HitFinder]: taking as input deconvoluted unipolar wire signal
[Deconv], it finds regions above a given threshold; on each region it performs a
multi-Gaussian fit and extracts the hit time and width.

11

Figure 1 . Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and uncertainties. The red circle
represents the measurement (a hit). The yellow point on layer N represents the estimated
state (position and direction) at layer N before taking into account information from hits on
that layer. The blue point is the updated state at layer N, taking into account all hits up to and
including layer N. Center: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. Right: Schematic representation of track building. Unlike in track fitting,
the algorithm has many branch points, e.g. when hits are missing on layers or when multiple
hit candidates are encountered on a layer.

Tracking is the single reconstruction step that takes the largest fraction of computing time in
the CMS reconstruction workflow [CMSTkVtx]. As a function of the instantaneous luminosity,
the total computing time grows exponentially, and also the relative fraction of time spent for
tracking increases (Fig. 2).

Figure 2. CPU time per event versus instantaneous luminosity, for both full reconstruction
and the dominant tracking portion.

6

ttbar + 70 PU

●  Efficiency comparable for pt > 0.5 GeV
○  Exploration of endcap inefficiency is ongoing

●  Fake rate is more significant
○  Final cleaning should help

○  Investigate quality criteria

●  Duplicate rate similar to no pileup / muon
case
○  Which means it has the same origin – duplicates

in input seed collection.

○  Post-build cleaning / merging will get this down to
CMSSW levels

12

The	problem:	
Track reconstruction time diverges
with increasing luminosity and
becomes unmanageable for data
processing at HL-LHC

The	algorithm:
Kalman filter-based fit or build. Build is combinatorial search for
compatible hits along the track. Vectorized using Matriplex: SIMD
processing of multiple candidates. Parallelization with threads at
seed level (TBB). Challenges: unpredictable branching, low
arithmetic intensity (quick processing of many small objects).
Performance	analysis:

Results	and	next	steps:
Vectorization speedup up to 3x. Efficient parallelization when
using seeds from multiple collision events. Single thread 10x
faster than CMSSW with comparable physics performance.
CMSSW integration and further optimizations in progress.

The	problem:
Reconstruction in LArTPC neutrino
experiments is challenging due to
many possible neutrino topologies,
noise, contamination of cosmic rays.
Takes O(100) s/ev in MicroBooNE,
and future experiments will be much
bigger and on more intense beams.

Feasibility	study:
Hit	finding	algorithm.	

Results:

Plans:
All result from

TTbar+70PU sample

MicroBooNE‘sTPC is made of ~8k wires readout at 2 MHz. Signal from charged
particles produces Gaussian pulses. Hit finding is the process of identifying such
pulses and determine its properties (peak position and width). Suitable for feasibility
study to demonstrate parallelism with LArTPC: wires can be processed independently.
Currently takes ~15% of the MicroBooNE reconstruction workflow.

Figure 1 . Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and uncertainties. The red circle
represents the measurement (a hit). The yellow point on layer N represents the estimated
state (position and direction) at layer N before taking into account information from hits on
that layer. The blue point is the updated state at layer N, taking into account all hits up to and
including layer N. Center: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. Right: Schematic representation of track building. Unlike in track fitting,
the algorithm has many branch points, e.g. when hits are missing on layers or when multiple
hit candidates are encountered on a layer.

Tracking is the single reconstruction step that takes the largest fraction of computing time in
the CMS reconstruction workflow [CMSTkVtx]. As a function of the instantaneous luminosity,
the total computing time grows exponentially, and also the relative fraction of time spent for
tracking increases (Fig. 2).

Figure 2. CPU time per event versus instantaneous luminosity, for both full reconstruction
and the dominant tracking portion.

6

Track	Fit Track	Build

D. Riley (Cornell) — CHEP2016 — 2016-10-12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Data structure: Matriplex
“Matrix-major” matrix
representation designed to fill a
vector unit with n matrices
operated on in synch

Use vector-unit width on Xeons
• With or without intrinsics
• Shorter vector sizes w/o intrinsics
• For GPUs, use the same layout with

very large vector width

Interface template common to
Xeon and GPU versions

6

Matriplex

Tracy Usher
LArSoft Coordination Meeting 

June 19, 2018

GausHit Finder
Updates

Pulse	height	vs	time	bin

Typical	reconstruction	chain	for	LArTPC experiments

Replicated experiment’s implementation in standalone code for
easier testing and optimization. Replaced current Gaussian fit
technique (based on Minuit+ROOT libraries) with local
implementation of Levenberg-Marquardt minimization. Results
nearly identical in terms of hit properties but with large speedup
(~8x). Next steps: parallelize at wire level; identify strategy for
vectorization; test scalability; port improved version into
experiments’ codebase.

After completing the feasibility study,
we will focus on identifying another
crucial algorithm. Options could be
upstream (signal processing) or
downstream (pattern recognition) in
the reconstruction chain with respect
to Hit finding.

Computational performance
●  Vectorization (building only) gives about

2 to 3x speedup (AVX, AVX-512)
●  For multi-threading, having multiple

events in flight is crucial!
○  Currently cleaning up “administrative” tasks we

didn’t care much about before, e.g., loading of
hits, seed cleaning.

●  Compared to CMSSW, mkFit is about
10x faster (both single-thread).
○  Intentionally vague as this is work in progress.

○  icc significantly boosts mkFit performance

●  ttbar + 70 PU @ KNL: 115 events / s
@ Skylake Au (32 core): 250 events / s

14

KNL
Memory efficiency and scaling

(100 events, NERSC Cori, 1	NUMA	domain,	MCDRAM	in	direct	mapped	cache	mode)

Overall scaling on KNL

Least scalable	functions:	Increase	in	total
cycles	(from 8	to	256	threads)

MkBuilder::map_seed_hits() 2.6e+06
Hit::Hit() 1.6e+05
Matriplex<float,	1,	1,	8>::operator[](int) 2.1e+04

Correlations between
metrics (Spearman)
for 256 threads

Stall
Cycles

Total
Cycles

Scalar vector ops 86.01% 82.78%
Conditional branches 81.92% 77.70%
L3 misses 81.20% 77.25%
Branch instructions 80.67% 77.00%
Branch mispredictions 79.81% 74.99%
Load/store instructions 79.68% 74.60%
L3 accesses 78.61% 73.99%
L2 total cache misses 77.84% 73.86%
L2 accesses 77.55% 72.79%
Memory acces stalls 77.02% 74.78%
L1 total cache misses 76.43% 71.66%
Unconditional branches 76.31% 71.99%
Vector operations 74.15% 68.52%
TLB data misses 73.86% 68.70%

Code profiled with TAU Commander (sampling) and analyzed with Pandas

