# NUCLEI <br> Nuclear Computational Low-Energy Initiative A SciDAC-4 Project 



Solving the nuclear quantum few- and many-body problem Direct connections to LQCD and TEAMS computingnuclei.org
Funded by DOE/SC (NP and ASCR) and NNSA

## People \& Institutions

## Argonne National Laboratory

R. Butler, A. Lovato, E. (Rusty) Lusk, S. Narayanan, J. ONeal, M. Piarulli (p), S. Pieper, S. Wild, R. Wiringa Indiana University
D. Berry, F. Fattoyev (p), C. Horowitz, Zidu Lin (g)

Iowa State University
R. Basili (g), M. Lockner (g), P. Maris, J. Vary Lawrence Berkeley National Laboratory
E. Na, C. Yang

Lawrence Livermore National Laboratory M. Kruse (p), E. Ormand, G. Papadimitriou (p), S. Quaglioni, N. Schunck Los Alamos National Laboratory J. Carlson, S. Gandolfi, E. Lawrence, H. Nam, A. Roggero (p) Michigan State University Md. Afibuzzaman (g), H.M. Aktulga, S. Bogner, M. Chen (g), K. Fossez (p), S. Guiliani (p), H. Hergert, D. Lee, T. Li (g), J. Lietz (g),
D. Lonardoni (p), W. Nazarewicz, E. Olsen (p), S. Wang (p), J. Yao (p)

Oak Ridge National Laboratory
G. Fann, G. Hagen, G. Jansen Ohio State University R. Caulfield (g), R. Furnstahl, J. Melendez (g), A. Tropiano (g), Y. Zhang (p)

University of North Carolina at Chapel Hill

J. Engel, E. Ney (g)

University of Oregon
B. Norris, S. Pollard (g)

University of Tennessee
W Jiang (p), T. Morris (p), S. Novario (p), T. Papenbrock, Z. Sun (p)

## Good News: People

Maria Piarulli (ANL $\rightarrow$ Washington University) Saori Pastore (LANL $\rightarrow$ Washington University)


Rodrigo Navarro Perez (LLNL, Ohio $\rightarrow$ San Diego State U) All named to new faculty positions in 2018

NUCLEI researcher Pieter Maris (ISU) elected to NUGEX

Matt Caplan (Indiana) 2018 APS dissertation award in Nuclear Physics


Stefano Gandolfi (LANL) Received DOE
Early Career Award in Nuclear Physics (2018).



## Jefferson Lab



DEEP UNDERGROUND


Physics of Nuclei \& Matter

- NN interactions \& chiral effect field theory
- Light Nuclear Spectra
- Heavy neutron-rich nuclei (FRIB)
- Beta Decay
- Nuclear Structure and dynamics at short-ranges (NN separation)
- Electron Scattering (JLAB)
- Neutrino Scattering (DUNE)
- Neutron Stars (LIGO)
- New support from NNSA:
light ion reactions and fission strong connections to lattice QCD and nuclear astrophysics


## ASCR-supported work in NUCLEI SciDAC Institutes in Blue

- Algorithmic/Automatic Differentiation: S.H. Krishna Narayanan
- Eigenvalue Solvers/Linear Algebra: Esmond Ng, Chao Yang (FASTMath)
- High-Performance Computing: Hai Ah Nam
- Load Balancing/Memory Management: Ralph Butler, Rusty Lusk
- Multiresolution/Nonlinear Approximation: George Fann
- Numerical Optimization: Jared O’Neal, Stefan Wild (FASTMath)
- Performance Optimization: H. Metin Aktulga, Gustav Jansen
- Performance Optimization: Boyana Norris (RAPIDS), Sam Pollard
- Uncertainty Quantification: Earl Lawrence


## RAPIDS Focus Areas

$\overline{Z R A P I D S}$

Application Engagement \& Community Outreach
Tiger Teams, Liaisons, and Outreach

| Data Understanding | Platform Readiness | Scientific Data Management |
| :---: | :---: | :---: |
| - Scalable methods <br> - Robust infrastructure <br> - Machine learning | - Roofline modeling <br> - Hybrid programming <br> - Deep mem. hierarch <br> - Autotuning <br> - Correctness | - I/O libraries <br> - Coupling <br> - Knowledge management |

NUCLEI areas w/ ongoing collaborations

## Potential future NUCLEI collaborations

FASTMath is focused on eight core technology areas


## Papers / Talks in 2018

## Papers/Talks: 2018

41 Papers and 35 talks including 10 Physical Review Letters, 1 Nature Physics

No-Core Shell Model
Coupled Cluster
AFMC
DFT
Leadership-class supercomputers
Deep Learning
Quantum Computing
Tin isotopes
Neutron Stars
Tetra-neutron
Localization
Chiral Dynamics
Weak Transitions
Electron and Neutrino
Scattering

6 joint physics and Math/CS
6 methods papers (including
Classical/quantum computing


Annual Meeting: UTK May 29-June 31
~50 participants

## Chiral Interactions and Light Nuclear Spectra

$H=\sum_{i} \frac{-\hbar^{2}}{2 m} \nabla_{i}^{2}+\sum_{i<j} V_{i j}+\sum_{i<j \ll i} V_{i j k}$
 and separation of the nucleons $\left(\mathbf{r}_{\mathbf{i}}, \boldsymbol{r}_{\mathrm{k}}\right)$
Use chiral formulations of NN and NNN interactions;
Either Delta-full or Delta-less
Fit NN using Pounders to NN data, NNN to light nuclei
using DMEM for memory management,

With Deltas, GFMC


See Piarulli \& Wild poster

No-core Shell Model (NCSM) Diagonalizes in HO basis GFMC:
Uses MC for spatial d.o.f. AFDMC:
Uses MC for space, spin \& isos
w/o Deltas, AFDMC


Lonardoni, et al., PRL 2018

## Deep Learning for Nuclear Binding Energy and Radius

## Developed an artificial neural network for NCSM Demonstrated predictive power



Architecture of neural network (above) used successfully to extrapolate the ${ }^{6} \mathrm{Li}$ ground stat energy from modest basis spaces (dashed lin sequence) to extreme basis spaces (solid line sequence) achieving independence of basis parameters (flat line in left figure).


Best Paper Award: COMPUTATION TOOLS 2018, Barcelona G.A. Negoita, et al. (w/ Esmond Ng and James Vary)

## Coupled Cluster for heavier nuclei

## Summit performance


"everything is a tensor contraction"

NUCLEI COLLABORATION MEETING JUNE 2018

See Jansen and Hergert poster

## Coupled Cluster and In-medium SRG for heavier nuclei

Low-lying states in Tin 100
(50 neutrons and 50 protons)

T. Morris et al, PRL 2018

Large gap to $2+$ state indicates doubly magic Lays the groundwork for more neutron-rich isotopes Relevant to nucleosynthesis

See Jansen and Hergert poster

## Density function theory for very heavy nuclei:

 Oganesson ( $Z=118$ )POUNDERS:

Basic Trust Region Iteration

Left: electronic localization for noble gases
Right: neutron localization in heavy nuclei

(Wild)


Using density functional theory and advanced computational techniques, We study the transition from strong shell structure (localization) to uniform matter.
Shell structure transitions to uniform matter in large nuclei
P. Jerabek, et al, PRL 2018

## Weak Interactions in Nuclei

## From beta decay to quasi elastic scattering

Historically significant issues:
Over predicting beta decay Under predicting quasi elastic scattering

Beta Decay


Empirically need to decrease rate (matrix element squared)
by ~50\%

Quasielastic Scattering


Empirically need to increase rate (matrix element squared)
by ~30-40\%

## Beta decay in light and medium-mass nuclei

Super allowed Gamow-Teller decay of 101


Pastore, et al PRC (2018)


Hagen, et al, CC

NN correlations and currents are critical - also for quasi elastic scattering

## Short-range structure of Nuclei: electron and neutrino scattering

## $\mathrm{e}^{-}$scattering



Lovato, et al, PRL (2016)
v scattering


Lovato, et al, PRC (2018)

## Short-range structure of Neutron Matter: Neutron star cooling and gravitational Waves

Observed cooling from MXB 1659-29 consistent with 'fast' cooling:


Edward F. Brown, C. J. Horowitz, et al., Phys. Rev. Lett. 120, 172701 (2018).

Constraints on radius and tidal deformability of a neutron star

Neutron skin thickness of 208 Pb


Radius of a $1.4 \hat{\text { solar mass neutron star }}$
F. J Fattoyev, J. Piekarewicz,
and C. J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018).

## Quantum Computing in Nuclear Physics

Computing the Deuteron On actual quantum computers

E. F. Dumitrescu et al., Phys. Rev. Lett.

Phys. Rev. Lett. 120, 210501 (2018).

Methods for computing
Quantum dynamics (electron and neutrino scattering)


Roggero, et al, arXiv 1804.01505 A SciDAC-4 Project computingnuclei.org


Conclusions
Exciting Era for Nuclear Physics:
Many New Capabilities for Computing Nuclear Structure and Dynamics:

Many new experiments and observations

- Ab-initio calculations of nuclear structure and decay
- Neutron-rich nuclei and r-process nucleosynthesis
- Weak interactions at low-energy (beta decay) and
- high-energy (electron and neutrino scattering)
- Neutrinos in astrophysics
- Gravitational waves and neutron star structure

Outstanding early career scientists
to take advantage of these opportunities

Funded by DOE/SC (NP and ASCR) and NNSA: Thank you!

