

# **SciDAC Center for Fusion Relevant RF Actuators:** Overview, RF Scattering from Turbulence, and Overcoming Scaling Limits for High Fidelity Predictive Simulation.

# N. Bertelli, S. Shiraiwa, E. D'Azevedo, M. Stowell, T. Kolev, M. Shephard, D. L. Green, P. T. Bonoli, on behalf of the RF-SciDAC team (listed below).

\*Work supported by US DoE contract numbers DE-SC0018090, DE-SC0018275, FWP 3ERAT952, FWP 2017-LLNL-SCW1619, and Work Proposal 3203.

#### **RF-SciDAC Center is a collaboration of FES and ASCR participants** from DoE laboratories, universities, and private companies

- Massachusetts Institute of Technology, P. T. Bonoli, B. Biswas (GS), A. Ram, S. Shiraiwa A. E. White, J. C. Wright
- Oak Ridge National Laboratory (FES), D. L. Green, R. Barnett (GS), J. Lore, C. Lau
- **Oak Ridge National Laboratory (ASCR)**. E. D'Azevedo, L. M Princeton Plasma Physics Laboratory, N. Bertelli, E.-H. Kim
- Lawrence Livermore National Laboratory (FES), A. Dimits, I. Joseph, T. Rognlien, M
- Lawrence Livermore National Laboratory (ASCR), T. Kolev, M. Stowell, V. Dobrev
- Post-doctoral associate (TBD) Tech-X, D. N. Smithe, T. G. Jenkins
- **CompX**, R. W. Harvey, Yu. Petrov
- **DIDITCO,** D. B. Batchelor
- odestar Research. J.R. Myra
- Rensselaer Polytechnic Institute (ASCR), M. Shephard, K. Karan (Post-doc) **University of Illinois - Urbana Champaign,** D. Curreli, M. Elias (GS) **XCEL Engineering**, L. A. Berry



#### Scientific Objectives & Organization of the **RF-SciDAC** Project

• Develop an integrated simulation for quantitative prediction of the antenna + sheath + scrape-off-layer + core plasma system which fully utilizes leadership class computing.

ion Relevant RF Actuators, 2018 SciDAC PI Meeting (July 2018)

- Validate this predictive capability on appropriately diagnosed experiments including dedicated RF test stands, linear devices, and existing tokamaks.
- Project organized into 4 thrusts:
- Thrust 1: RF WDM Components & Thrust Common Efforts (this poster)
- Thrust 2: RF + Turbulence (this poster)
- Thrust 3: RF + Equilibrium Transport (other poster)
- Thrust 4: RF + Impurity Generation (other poster)
- Use these tools to inform design of robust, impurity-mitigating RF heating and current drive sources for future fusion devices.

RF-SciDAC

#### Thrust 1: Production RF WDM components, interaction with AToM / TRANSP & thrust common developments.

ion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)



# Codes available as WDM components and core-edge coupling

P2F

CQL3D

https://github.com/ORNL-Fusion/p2

https://github.com/compxco/cql3d.

ant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

- Production (ready for integration)
- GENRAY <u>https://github.com/compxco/genra</u> AORSA https://github.com/ORNL-Fusion/aor
- TORIC / TORIC-HHFW / TORLH https://code.ornl.gov/jcwright77/toric5-orn
- Development
- RF Monte Carlo code (under initial design).

ter for Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

- Petra-M ... for the high geometric fidelity, cold, edge plasma solver https://github.mit.edu/shiraiwa/PetraM Base MFEM compatible meshing capability for RF structures.
- Project wide effort to improve software engineering best practices to enable code longevity.

RF-SciDAC

- Integration with AToM and TRANSP via the "Integrated Plasma Simulator" (IPS)
- Our center is making the hierarchy of RF tools available via the AToM-SciDAC supported integration technologies (IPS & OMFIT
- The IPS is a ASCR+FES developed file-based framework enabling serial and/or parallel simulation codes to function interoperably by providing a flexible capability for integrated, multi-physics simulation.
- Collaboration with AToM has seen GENRAY being used to demonstrate how to incorporate a component into IPS
- Support & improve the RF components in TRANSP.
- TORIC including non-Maxwellian multi-species.
- Verify / compare FPP and CQL3D.
- Verification of RF kick operator implemented in NUBEAM. GENRAY for EC waves & MPI GENRAY
- (in collaboration with CompX base theory effort).

Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

#### Delivery production RF codes as WDM components both for AToM and RF-SciDAC.

- Completing IPS components for the existing RF hierarchy of core wave-particle interaction tools.
- Also building RF integrated workflows to be provided to AToM . IPS-TorLH + IPS-CQL3D (Used in the 2017 DOE theory milestone).
- IPS-GENRAY + IPS-CQL3D (to be used immediately by AToM Park et
- IPS-TORIC + IPS-CQL3D.
- IPS-TORIC + IPS-P2F + IPS-NUBEAM.
- Examples to be added to the ips-examples AToM repo
- https://github.com/ORNL-Fusion/ips-examples
- Verify RF and RF+SOL components.
- Validation and application of these components continues.

#### **GENRAY & CQL3D**

- **GENRAY:** Ray tracing code.
- Used for different RF frequency regimes Include a SOL model.

ter for Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

- Include a scattering model from density fluctuatior • **CQL3D:** Fokker-Planck code.
- Used for different RF frequency regimes - Coupled to GENRAY, TORIC & AORSA
- Recently made available on GitHub.
- Constructing new IPS modules utilizing the updated AToM tools.
- Parallel performance of GENRAY being investigated and optimized.



# **AORSA, TORIC and TORLH**

- Core plasma, full-wave tools.
- AORSA (ion-cyclotron frequency range)
- Pseudo-spectral.
- Dense matrix inversion. • AORSA includes also SOL plasma.
- Coupled to CQL3D via IPS. TORIC (ion-cyclotron) / TORLH (lower-hybrid) HHFW propagation in NSTX (by AORSA)
- Finite-difference + spectral. Block-sparse matrix inversion.
- Coupled to MFEM for cold edge.
- Coupled to CQL3D via IPS.
- **Present activities**
- Public repo for AORSA now available. H propagation in C-MOD (by TORLH) Investigating single-node, no communication versions of AORSA / To perhaps for use as preconditioners.
- Exploring preconditioner for iterative solver to replace sparse direct solver. • Sparse direct method is not scalable for large 3D problems so finding effective

of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

preconditioner for iterative solver is important. Modernizing IPS workflows for inclusion in AToM.



- Present activities
- - RF-SciDAC

RF-SciDAC

**RF-SciDAC** 





#### A performance portable RF Monte Carlo code is required to future proof the hierarchy of RF tools.

- Legacy RF Monte-Carlo tools (e.g., ORBIT-RF, NUBEAM, etc) are difficult to include in high-performance integrated workflows.
- Performance portability options (e.g., Kokkos, OpenMP4, OpenACC are under investigation.
- Present activities (CompX, ORNL, ...) A simple Fortran demonstration cod has been constructed to communication the algorithm.



Vpar (m/s) In this run: 30 k test ions (1500 per radial bin); RF field is imported from AORSA. Distribution is at the midplane position R=75 cm, not far from the ICR layer at R~68 cm. RF-SciDAC

Versatile FEM analysis frontend is being developed and has been applied to a variety of RF propagation modelings



### High fidelity RF simulation requires integrated approach

- Integrate Core/edge wave propagation/absorption • Integrate with SOL plasma transport/turbulence
- Integrate PMI physics



n Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

vant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

#### Scalable high quality mesh generation integrated into simulation workflow

Geometry elements from original source • Directly defeaturing CAD assemblies (with Simmetrix (imModeler • EFIT curves/core RF solver mesh Curved mesh generation

 Accurate geometry representation with a fewer elements

- Integration into workflow • MFEM : In-memory integration with parallel PUMI meshes (Simmetrix mesh loaded into
- PUMI) Integration into frontend-tools is in preparation (PetraM/ $\pi$ Scope)



# **Thrust 2 : RF-Turbulence Interaction Component & Coupling Development**



#### **RF-turbulence interactions are important for** understanding RF

- Turbulence affects RF propagation
- Turbulent transport affects the mean density profile -> affects RF propagation, launcher coupling, and RF-sheath interactions
- Large-amplitude filaments (="blobs") and resistive drift-wave fluctuations can scatter RF
- RF and associated launching structures affect turbulence
- RF sheaths can directly seed instabilities
- RF sheaths and ponderomotive forces result in flows
- These can
- stabilize turbulence (e.g., via shear flow)
- or destabilize (e.g., via Kelvin-Helmholtz drives)

ant RF Actuators , 2018 SciDAC PI Meeting (July 2018)



Core-edge integration of linear wave propagation is demonstrated in 2D



f Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

nt RF Actuators , 2018 SciDAC PI Meeting (July 2018)

. and is extended to 3D





- ICRF wave antenna propagation in the Alcator C-Mod tokamak Petra-M solves the RF field propagation
- in cold plasma near the antenna in 3D geometry TORIC solves the RF field propagation ir
- not core region



#### How does the density perturbation in front of antenna impact RF wave propagation? d-line aligned • Earlier simulation (in 2D) indicates the Experiment shows fie importance of density perturbation density perturbations Striation (stationary



RF Actuators , 2018 SciDAC PI Meeting (July 2018)

# True 3D LH wave simulation indicates that the LH wave field pattern could be significantly altered



usion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)





• More peaked HXR emission profiles

• Total driven current increased due to the synergistic interaction among scattered waves.

# High fidelity means a need for iterative methods.

 High fidelity 3D requirements have revealed the limitations on traditional sparse direct solvers.

sion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

- For large N >  $10^6$ , storage for LU factorization can be O(100) times that of the original matrix, i.e., prohibitively high cost in memory.
- Iterative methods will be required to solve frequency domain RF equations at the desired fidelity. Approaches include.
- AMS (within hypre), which requires 120 additional fine-grid information that MFEM can generate and pass automatically. 40 Preconditioners based on physics insights and intuition. 0

50000

100000

- Reformulation of problem with elliptic operator.
- Number of Processors • Investigations into these approaches are underway.

f Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

# Future work

- BOUT++ turbulence model
- Exercise nonlinear terms
- Multi-region (core and SOL) model via appropriate BC's • RF-sheath biased-plate BC on part of outer flux surface
- 2D verify against UEDGE > 3D rectangle Impinging structure with fields from RF codes
- Ponderomotive force terms in turbulence model

#### RF Scattering models and simulations

- Extend scattering simulations to used turbulent fields from **BOUT/BOUT++** simulations
- Implement for other RF codes (GENRAY VORPAL) Common data API for passing turbulent fields to RF codes

IPS wrapper + "example"

• First, run a BOUT++ model • Then, couple this with RF code(s) using above API

for Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)



#### 2-D and 3-D direct solvers on shared memory system is consistent with theoretical scaling

- a 1.5 TB cluster was used to solve 2-D and 3-D cold plasma problem
- memory and time used is approximately consistent with theoretical expectation
- Time to solve large 3-D problems can be expensive



# 2-D and 3-D direct solvers on distributed memory system may be limited by memory per node

of Fusion Relevant RF Actuators, 2018 SciDAC PI Meeting (July 2018)

- MUMPS solver may be limited by memory per node (http://www.association-ar ote.fr/Fichiers-2014/20-r <u>4-C-Puglisi-Amestoy.pd</u>
- COMSOL/MUMPS solver on cold plasma problem show similar trend
- Can iterative solvers also help with this issue?

**RF-SciDAC** 



#### **Testing domain decomposition and other iterative** solvers have started with various approaches

n Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

- Same cold plasma problem solved with direct solver on previous slides have been tried with iterative solvers in COMSOL Test if iterative solvers converge and if so, the memory
- and time resources necessary Krylov methods are widely used to find solution
- $x_{\mu}$  in Span{r,Ar,A<sup>2</sup>r, A<sup>3</sup>r ...} Good preconditioner is very important for all iterative solvers
- Domain decomposition c each subdomain can be assigned to each processor independently, making distributed computing very efficient



Images from Thesis by Andre Gaul 2009

tuators , 2018 SciDAC PI Meeting (July 2018)





#### MFEM

Flexible discretizations on unstructured grids

Lawrence Livermore National Laboratory

- Triangular, quadrilateral, tetrahedral and hexahedral meshes Local conforming and non-conforming refinement.
- Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ...
- High-order and scalable
- Arbitrary-order H1, H(curl), H(div)- and L2 elements. Arbitrary order curvilinear meshes.
- MPI scalable to millions of cores. Enables application development on wide variety of platforms: from laptops to exascale machines.
- Built-in solvers and visualization Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU
- Accurate and flexible visualization with Vislt and GLVis **Open-source software**
- LGPL-2.1 with thousands of downloads/year worldwide. Available on GitHub. Part of ECP's CEED co-design center.

# meshes ompressible flow http://mfem.org

Free, lightweight, scalable C++ library for finite element

methods. Supports arbitrary high order discretizations and

curved elements Parallel non-conforming AMF

Î)P 💓 CEED

EXASCALE DISCRETIZATIONS

LE simulations

meshes for a wide variety of applications.

#### H(curl) diffusion is difficult to solve

r for Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)

EM diffusion modeled by second order definite Maxwell

$$\nabla \times \alpha \nabla \times E + \beta E = f \quad \mapsto \quad A_h x = b$$

Challenging due to large "near-nullspace"

The Auxiliary-space Maxwell Solver (AMS) achieves scalability by reduction to the nodal subspaces

$$\mathbf{H}_{h} \mathbf{H}_{h} \mathbf$$

 $B_h = R_h + G_h B_{v,h} G_h^t + \mathbf{\Pi}_h \mathbf{B}_{v,h} \mathbf{\Pi}_h^t$ Point smoother for AMG solver for AMG solver for  $\mathbf{\Pi}_{h}^{t}A_{h}\mathbf{\Pi}_{h}$  $G_h^t A_h G_h$ 

for Integrated Simulation of Fusion Relevant RF Actuators , 2018 SciDAC PI Meeting (July 2018)



breakthrough in 2008 ASCR base report

