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Th rust 1 - I | d SOL d I 6 ' " o | J': | ° Integrate reallstlc geometry mOdeI RF Jctuators .| ‘\ o 5l | i ' rntr " "' | ol [with n_perp scattering Ilmlted by memory per node 120 O 1 g ﬁemrzosrgl\tllesg(:n’::ienrul::sd)e (GB)| — Local conforming and non-conforming refinement. r#,
nclude a m(? el. . OB | E v 1 @ene \ /‘ ;i > : . (httD: / /WWW. association-arist S T g | — Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, ... Hi order i A
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SOL Fluid Equilibrium .ﬁ*‘%’gj — Cou p|ed to GENRAY, TORIC & AORSA . ) o p ‘ . . . , . cold plasma problem show o on wide variety of platforms: from laptops to exascale machines.
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Response . . 5‘%%@5 Model _ , Ray trojectories for LH waves ! — Dense Matrix Solver % o —  Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU, ...
w '"gﬁgrﬁifsiﬁrta;g" .é"v‘ 4 Parameters — Recently made available on GitHub. in C-Mod —0.4; ¢ e Edge Perpendicular wavenumber spectrum is broadened with the blob. e Can iterative solvers also help 1 o 10T 5 ‘ _ Accurate and flexible visualization with Vislt and GLVis Surfzce
I \__~ 1K CPU Hours S e — Constructing new IPS modules utilizing the updated AToM tools. _ Unstructured mesh with complicated LHCD simulation (GENRAY/CQL3D) using the broadened spectrum with this issue? 6 Oé - — o 0 T TE— | . Open-source software meshes
. . . . . kY 8 [ . Heart
5 y, — Parallel performance of GENRAY being investigated and optimized. 05 06 07 cho# geometry p:(EdIIS/’:Zre veaked HXR emission profiles Number of nodes used Number of nodes used —  LGPL-2.1 with thousands of downloads/year worldwide. modet;Iir_ ALE simulations
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AORSA, TORIC and TORLH Testing domain decomposition and other iterative

Scalable high quality mesh generation ... and is extended to 3D H(curl) diffusion is difficult to solve

Codes available as WDM components and core-edge High fidelity means a need for iterative methods.

Coupling Core plasma’ full-wave tools. integrated into simulation workflow SOIVerS have StartEd Wlth various apprOaChes
_ . _ — AORSA (ion-cyclotron frequency range) e High fidelity 3D requirements have revealed the limitations on - e S EM diffusion modeled by second order definite Maxwell
* Production (ready for integration) +  pseudo-spectral Geometry elements from original B7 TIEETY 5% A ® Same cold plasma problem solved with direct -, g g " e Y
e Dense maptrix inversion source traditional sparse direct solvers. solver on previous slides have been tried with m otis P oo oo
B GEN_RA.Y | - PZF, . | e AORSA includes also SOL plasma. * Directly defeaturing CAD — For large N > 10°, storage for LU factorization can be O(100) times that iterative solvers in COMSOL g e VxaV x E —+ BE — f —> Ahaj — b
https://github.com/compxco/genray.git https://github.com/ORNL-Fusion/p2f s Antenna assemblies (Wlth Simmetrix .. .. ep ene . . — Test if iterative solvers converge and if so, the memory !
AORSA CQL3D e Coupled to CQL3D via IPS. i o SimModeler) of the original matrix, i.e., prohibitively high cost in memory. and time resources necessary ’ -4
B _ | B , _ — TORIC (ion-cyclotron) / TORLH (lower-hybrid D a) _ , , , W vy ¥ : “ ”,
https://github.com/ORNL-Fusion/aorsa https://github.com/compxco/cal3d.git Fin(ite diﬁYerence +)S£ ctral ( Ybrid) wsrx oy aonsa) e EFIT curves/core RF solver mesh e Iterative methods will be required to solve frequency domain e Krylov methods are widely used to find solution T Gl sy i Challenging due to large “near-nullspace™:
_ ) ¢ - - : . . . . . : 2 3 B comy  SOR Vecto P
ISE-I/C/C{D Jgfrilc (';'vt'fvyr\ll {]ggﬁ)tit's_oml e Block-sparse matrix inversion. Curved mesh generation : RF equations at the desired fidelity. Approaches include ... X, in Span{r,Ar,A°r, A°r ...} o] Cmmmcem i : ——
DGR OMLAONIEHTE * Coupled to MFEM for cold edge. * Accurate geometry representation | _ i - - 10 AN wealcscaling example (MFEM)T, ® Good preconditioner is very important for all e [ The Auxiliary-space Maxwell Solver (AMS) achieves
e Coupled to CQL3D via IPS with a fewer elements AMS (within hypre), which requires iterative solvers 3 A
: o " : Ly : B I ee Bl e 1K :
e Development Present activities e ”  ICRF wave antenna propagation in the additional fine-grid information, o 35rg e ) scalability by reduction to the nodal subspaces
_ : Integration into workflow Alcator C-Mod tokamak that MFEM can generate and o e ([
~ RF Monte Carlo code (under initial design). —  Public repo for AORSA now available. LH propagation in * MFEM :In-memory integration ® Petra-M solves the RF field propagation ass automaticall E Y w7 TR i A é G
— Petra-M ... for the high geometric fidelity, cold, edge plasma solver PR, S - §MOD (by TORLH) with parallel PUMI meshes in cold plasma near the antenna in 3D P v § e * Domain decomposition of e T lh T I & AMS a top 10
_ ; ' Y X A ; . P e 77) Wit ey | P, NN p S (B DomainDecsrryoddion's
https://github.mit.edu/shiraiwa/PetraM_Base ' ' Investigating single-node no communication versions of AORSA / TORI (Simmetrix mesh loaded into geometry — Preconditioners based on - =i = each subdomain can be ) i v P —— breakthroaugohpin 2008
MFEM tibl hi bility for RF struct perhaps for use as preconditioners, PUMI) ® TORIC solves the RF field propagation in hysics insights and intuition 20 | iened t h D e " ¢ ASCR base report
compatibie meshing capability Tor RF Structures. — Exploring preconditioner for iterative solver to replace sparse direct solver. * Integration into frontend-tools is hot core region bropag PhY . ' 0 — ia:;f;eendeonf@c mr;rlgr(izssor v T Bn = Ry + G, B, hGh + 11, B, hHh
. . . . . . . .. . 1 1 _ H H , i /<\ . ) ’
e Project wide effort to improve software engineering beSt/\ ,{x *  Sparse direct method is not scalable for large 3D problems so finding effective i ,{x in preparation (PetraM/nScope) /\ ,{x Re-for-mulat|on of problem with 0 50000  10000e distributed computing very K 7 p ,{x » » » 1 ,{x
. . A preconditioner for iterative solver is important. Ao L 7 WA elliptic operator. Number of Prgtessors.\ | W\~ gy o | X AT Point smoother for AMG solver for AMG solver for oLl A
practices to enable code Iongewty. RF-SciDA — Modernizing IPS workflows for inclusion in AToM. RF-5c¢iDAC . . . F-SciDAC efficient —— — RF-5¢ciDAC t t RF-5ciDAC
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