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Quantum Monte Carlo (QMC) methods provide numerically
exact results for interacting quantum many-particle systems and
thus are widely used to study their physics. The analytic
continuation of imaginary-time QMC data to extract real-
frequency spectra remains a key problem in connecting theory
with experiments. In this work, we present a fast and efficient
stochastic optimization method (FESOM) as a more accessible
variant of the stochastic optimization method introduced by
Mishchenko [Phys, Rev. B 62, 6317 (2000) ].
].

Stochastic	Optimization	for	Analytical	
Continuation

v The analytic continuation process involves an inversion of 
the integral  

𝐺 i𝑤$ = &𝑑𝑤
�

�

𝐾 𝑖𝑤$, 𝑤 𝐴(𝑤)

• G i𝑤$ is an observable such as the single-particle Green's 
function measured in a QMC calculation of discrete 
Matsubara frequencies 𝑤$

• 𝐴 𝑤 is the spectral function and the quantity of interest
• 𝐾 𝑖𝑤$,𝑤 = 	 1

23453
is the kernel

v The discretized analytical continuation is given as follows

𝐺$ =6𝐾$7𝐴7
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• L is the number of partitions in real axis
• 𝐺$ = 𝐺 i𝑤$
• 𝐾$7 = ∆3;

23453;
• 𝐴7 = 𝐴(𝑤)

Ø The difficulty of analytical continuation arises from the fact 
that the matrix 𝐾$7	is ill-conditioned, i.e. small errors in the 
QMC data 𝐺$ cause large errors in the quantity of interest 𝐴7
and there are an infinite number of solutions.
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Summary

• Stochastic optimization could address difficulties encountered 
by deterministic methods

• It gives rigorous estimation for the quantity of interests in 
quantum materials simulations

• The scalability of stochastic optimization makes the algorithm 
flexible and is especially suitable for high performance 
computing facilities
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FESOM adopts the Bayesian framework to address the ill-
posedness of the kernel matrix. We assume the prior 
distribution is uniform and focus on estimating spectral function 
by the mean value of the likelihood. The algorithm is composed 
by the following procedures:

• Initialize R realizations of the spectral function 𝐴 with the 
initial guess 𝐷, denoted by	𝐴=> 𝑤7 = 𝐷(𝑤7)

• For the r-th sample 𝐴2> 𝑤7 , we add a Gaussian process 𝜆2> to 
get a propose spectral function 𝐴2@AB

> 𝑤7
• If the proposed spectral function	𝐴2@AB

> fits the data better than 
the previous 𝐴2>, we accept the update and set	𝐴2@1> =	𝐴2@AB

> . 

Otherwise, the update is rejected and 	𝐴2@1> =	𝐴2>

• Calculate the final estimated spectral function by averaging 
all the samples, i.e. �̅� 𝑤7 = 	 1

D
	∑ 	𝐴2	> 𝑤7D
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Stochastic optimization

Maximum entropy

Synthetic spectral function 

Two dimensional  Hubbard model

FESOM with 10 samples FESOM with 100 samples Comparison between FESOM with 
MaxEnt
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(c)

MaxEnt estimation FESOM estimation Confidence bands in FESOM

v We use four point cluster data as an example to demonstrate 
the performance of SOM for DCA+

Ø Samples in FESOM capture the confidence band for the 
spectral function

Ø FESOM estimation is better than the MaxEnt

The dynamical cluster approximation (DCA) is a systematic 
extension beyond the single-site approximation in dynamical 
mean field theory, to include spatially nonlocal correlations in 
quantum many-body simulations of strongly correlated systems. 
The DCA uses coarse-graining of the momentum space to 
reduce the complexity of quantum many-body problems, 
thereby mapping the bulk lattice to a cluster embedded in a 
dynamical mean-field host. The DCA+ [Staar et al., Dynamical
Cluster, Phys. Rev. B 88, 115101 (2013).] method extends the 
DCA through the inclusion of a self-energy with continuous 
momentum dependence. Here, we present a stochastic 
optimization method (SOM) that reconstructs the continuous 
self-energy calculated in the DCA+ from the self-energy 
calculated on the cluster.

SOM	for	DCA+	

v DCA+ extends DCA through the inclusion of a lattice self-
energy with continuous momentum dependence which gives 
the relation

ΣG(𝐾, 𝑖𝑤$) =
𝑁G
𝑁 6𝜙J(𝑘)

�

L

ΣMNO@(𝑘, 𝑖𝑤$)

• ΣG(𝐾, 𝑖𝑤$) is the cluster self-energy
• ΣMNO@ 𝑘, 𝑖𝑤$ is the DCA+ lattice self-energy
• 𝜙J(𝑘)	 is the patch function with 𝑁G	patches

v The SOM constructs a smooth self-energy surface that 
satisfies the identity (1).
• The SOM uses the interpolated cluster self-energy as 

the initial condition to start the algorithm 
• At each iteration step, we perturb the previous self-

energy surface by a Gaussian process and accept the 
proposed self-energy surface that satisfies (1) better

• The SOM is implemented on the coarse grids, and 
then refined on the finer girds
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v We demonstrate the performance of FESOM and compare 
FESOM with Maximum Entropy method (MaxEnt)

SOM reconstructed self-energy 
surface on coarse grids

SOM reconstructed self-energy 
surface on fine grids
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Optimized surface integration

Fitting of SOM to the original 
cluster data

Ø SOM constructs smooth self-energy and fits the cluster data

Table: Error 
comparison

Different patching of the momentum space


