The Scalable Data Management, Analysis, and Visualization (SDAV) Institute

Key Technical Accomplishments

(Also, check out 8 posters)

http://sdav-scidac.org/
SDAV Institute

Arie Shoshani (PI)

Co-Principal Investigators from:

Laboratories
- Argonne NL
- Lawrence Berkeley NL
- Lawrence Livermore NL
- Oak Ridge NL
- Los Alamos NL
- Sandia NL
- Kitware (Industry)

Universities
- Georgia Inst of Technology
- North Carolina State U
- Northwestern U
- Ohio State U
- U of California, Davis
- Rutgers U
- U of Utah

24 people attending

SciDAC PI meeting 2015
SDAV Approach to Productivity and Relevance

- Main Emphasis over the last year
 - Parallel processing on multi/many cores
 - *In situ* processing on leadership-class facilities (LCFs)
 - Support ever growing volume of data (TBs – PDs)
 - Collaborate with application scientists to enhance their data understanding and insight
 - Pro-active installation and support of software on LCFs

- Libraries, tools, and Frameworks
 - Libraries – software package that can be invoked (or embedded) by other programs through APIs
 - e.g. in-situ data movement, code-coupling, indexing, rendering, compression
 - Tools – stand-alone software package – usually support user interfaces
 - e.g. topology-based analysis, feature tracking, flow analysis over space/time, I/O monitoring
 - Frameworks – software that can imbed multiple libraries
 - SDAV has mainly I/O and visualization frameworks
SDAV Portfolio
(http://sdav-scidac.org/toolkit.html)

Data Management tools

<table>
<thead>
<tr>
<th>I/O Frameworks</th>
<th>In Situ Processing</th>
<th>Indexing / Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIOS</td>
<td>GLEAN</td>
<td>FastBit</td>
</tr>
<tr>
<td>Darshan</td>
<td>DIY</td>
<td>ISABELA</td>
</tr>
<tr>
<td>Parallel netCDF</td>
<td>DataSpaces</td>
<td></td>
</tr>
<tr>
<td>ROMIO</td>
<td>EvPath</td>
<td></td>
</tr>
<tr>
<td>ViSUS/IDX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDAV Portfolio
(http://sdav-scidac.org/toolkit.html)

Analysis and Visualization tools

- **Analysis and Visualization Frameworks**
 - Visit
 - ParaView

- **Analysis and Visualization Tools and Libraries**
 - ExMage
 - Ultravis-P
 - IceT
 - VTK
 - TALASS
 - MSCEER
 - NDDAV

- **Multi-/Many-core Visualization Libraries**
 - Dax
 - EAVL
 - PISTON
Deployment of SDAV Software

<table>
<thead>
<tr>
<th>Software</th>
<th>ALCF</th>
<th>NERSC</th>
<th>OLCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEDMAV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DataSpaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darshan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLEAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastbit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastQuery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexpath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IceT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software</th>
<th>ALCF</th>
<th>NERSC</th>
<th>OLCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSUFlow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ParaView</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ParallelNetCDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIDX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCDVis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VisIt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VisUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTK-m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warp+VisIt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Red**: Installed
- **Green**: Installed in other tools
- **Blue**: Local, unsupported

Note: The status icons are placeholders and should be replaced with actual icons representing the status of each software on each site.
Visualization
Frameworks and tools
VTK-m: Accelerating the Visualization Toolkit for Multi-core and Many-core Architectures

VTK-m goals

- A single place for the visualization community to collaborate, contribute, and leverage massively threaded algorithms.
- Reduce the challenges of writing highly concurrent algorithms by using data parallel algorithms.

- **VTK** (Kitware) is a serial, single-threaded class library (data structures and algorithms) used as the basis for important applications (VisIt, PV).
- **EAVL** (ORNL) emphasizes the development of a new data model,
- **Dax** (Sandia) emphasizes the development of a new execution model,
- **PISTON** (LANL) emphasizes portability and parallel algorithm development.

VTK-m constituent technologies

- **VisIt, ParaView**
- **VTK-m**
- **Phi, Tesla, x86**

VTK-M
VTK-m Progress and Results

Features
- Device Interface (Serial, CUDA, TBB; OpenMP in progress)
- Architecture allows hardware-agnostic implementations
- Field and Topology Worklet and Dispatcher implemented

Filters
- Isosurface for structured grids
- Statistical filters (histograms, moments, etc.)
- In development: stream lines, stream surfaces, tetrahedralization

Example: ray casting with DAX and VTK-m
- Implementation of both ray-casting and cell projection volume rendering algorithms using Dax, one of VTK-m’s constituent projects
- Complied for CUDA, OpenMP, and Intel’s Thread Building Blocks
- Performance study on NVIDIA Titan X GPU, Intel Xeon, and Intel Xeon Phi
- Cell projection implementation using data parallel primitives renders image in near sub-second times.

Volume rendering of type Ia supernova simulation data set using ray-casting
Continued collaboration and use of visualization tools with specific science code

Example: \textit{in situ} Visualization and Analysis of Particle Accelerator Simulations using WarpVisIt

components
- Warp framework: PIC modeling of beams, accelerators, plasmas, …
- VisIt: parallel visualization tool

Problem
- Warp worked with the popular OpenDX (data explorer)
- 10^7 to 10^9 particles are required for simulation but often only a small fraction form features of interest

Solution
- Couple state-of-the-art \textit{in situ} visualization tool VisIt with Warp
- Integrate \textit{in situ} query capabilities with Warp
- Integrate high-performance I/O with Warp
- Provides dynamic feature exploration while simulation is in progress
in situ Visualization and Analysis of Particle Accelerator Simulations using WarpVisIt

Impact

- Enable flexible *in situ* analysis of particle features
- Reduce cost for visualization and I/O
- Enable analysis and collection of particle subsets of interest at higher temporal frequency

Enable Filtered Species

- Easy definition and implementation of derived particle species while exposing to the analysis the same species interface as Warp

a) Without halo filter

b) With halo filter
Data Analysis Tools
Analysis Tools Applied to Various Applications

- **Feature-driven analysis**
 - *Dynamic tracking graphs and multi-core exploration, e.g.*, Localized thresholds for vortex detection

- **Importance driven analysis**
 - *In-situ data triage/reduction, e.g.*, Explorable images

- **Statistical analysis and data mining**
 - *Feature-based algorithms in MPI, e.g.*, Memory efficient graph analytics

- **Topological techniques**
 - *Integrate higher order feature descriptors, e.g.*, Abstract representation of material structure to investigate Lithium diffusion

- **Vector field analysis**
 - *Incorporate advanced statistical methods, e.g.*, Flowline indexing via geometric signatures
Problem: Lithium Diffusion in Carbon Nanospheres

- understanding their cycling and capacity to store lithium is not possible with classical MD simulations
- Instead, models for lithium diffusion are used where the valence of a carbon ring determines whether or not lithium is able to pass through

Tool used for modeling structure

- MSCEER (Morse-Smale Complex Exploration, Evaluation, and Reasoning) is a set of tools for delivering state-of-the-art topology-based analytics to the scientific community.

New algorithm developed

- A new algorithm in MSCEER based on discrete Morse theory operates on a Delaunay triangulation, explicitly identifying ring structures and their valence

Result

- Allow interactive visualization of blocking and non-blocking structures, for the first time showing the planes along which lithium can diffuse. Penetration into the nanosphere is dominated by large-scale dislocations.
Analyzing and Tracking Features in Large-Scale Turbulent Combustion at Scale (using TALASS)

Understanding Flame Stability in Turbulent Non-Premixed Combustion
• Find when and where a flame becomes unstable and undergo significant extinction and re-ignition decreasing efficiency and increasing emissions.

Challenges
• Complex fast moving geometry
• Extinction threshold is uncertain and unstable

Tool used to enhance understanding
• Topological Analysis of Large Scale Simulations (TALASS)
• Generate graphs that track flame progression over time

Results
• Modified graph using adaptive threshold to produce cleaner tracks, easier to understand and analyze.
Data and Storage Management
The Traditional Post-Processing I/O Stack

high-level I/O interfaces: HDF5, Parallel netCDF

MPI-IO implementation: ROMIO is the basis for all platforms today.

production software: GPFS (IBM), Lustre (Intel/Whamcloud)

Application

High-Level I/O Libraries

I/O Middleware

I/O Forwarding / Routing

Parallel File System

I/O Hardware

Monitoring application I/O behavior at scale: Darshan running on production platforms, with negligible overhead.
SDAV Data management frameworks provide a vehicle for deployment of *in situ* data analysis/transformations.

<table>
<thead>
<tr>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Management Framework</td>
</tr>
<tr>
<td>Data Model Interface(s)</td>
</tr>
<tr>
<td>(e.g., adaptive mesh)</td>
</tr>
<tr>
<td>Data Management Services</td>
</tr>
<tr>
<td>(e.g., buffering, scheduling, code coupling)</td>
</tr>
<tr>
<td>Data Transformations</td>
</tr>
<tr>
<td>(e.g., indexing, compression, in situ analysis)</td>
</tr>
<tr>
<td>Parallel File System</td>
</tr>
</tbody>
</table>
ADIOS (Adaptable I/O System)

- Abstracts Data-at-Rest to Data-in-Motion (*in situ*) for HPC
 - Provides portable, fast, scalable, easy-to-use, metadata rich output
 - Dynamically allows users to change the method during an experiment/simulation
 - Provides solutions for a large number of the applications
 - Applied to extremely large data volumes

- Astrophysics
- Climate
- Combustion
- CFD
- Environmental Science
- Fusion
- Geoscience
- Materials Science
- Medical:
 - Pathology
 - Neutron Science
 - Nuclear Science
 - Quantum Turbulence
 - Relativity
 - Seismology
 - Sub-surface modeling
 - Weather
I/O Performance Improvement for Multiple Applications
(mentioned in last PI meeting)

Optimizations use:

- Synchronous I/O on leading HPC systems (Titan, Mira, Edison, Tiahne-1A, Garnet, …)
- Techniques are to optimize in-memory data copy, movement, and file system access
- Optimizations for GPFS, Lustre
I/O Frameworks Facilitate Embedding *in situ* Data Services

Example: In-Memory Data Management for Coupled Simulation Workflows using Staging with DataSpaces and ADIOS

The need – enable *in situ* processing and analysis

- Staging as a persistent service – applications can dynamically connect to use staging / staging hosted services
- Enable more complex and dynamic workflows
- Many use cases: I/O acceleration, data staging, coupling, data reorganization/manipulation, indexing/querying, data persistence, etc.

Code Coupling: get, put, publish, subscribe service

In transit data movement and workflow management
In-Memory Data Management for Coupled Simulation Workflows using Staging with DataSpaces and ADIOS

Fusion Application (C.S. Chang)
- XGC1 and XGCa executed sequentially and share data
- In each iteration, the workflow first executes XGC1 for n time steps to compute turbulence data and particle state, and then executes XGCa for m time steps to evolve the state of plasma.
- XGC1 and XGCa use node-local shared memory segments as part of an in-memory data staging service

Impact of using DataSpaces
- Enables tightly coupled simulations at very large scales use node-local shared memory segments as part of an in-memory data staging service
- Results in huge performance improvement over traditional file-based approaches

Particle data read: reduced by $\sim 98\%$ compared to file-based
GLEAN: Topology-Aware Parallel I/O

- I/O performance is highly dependent on configuration settings
 - Need to perform the right computation at the right place and time taking into account the characteristics of the simulation, resources and analysis
 - e.g. HACC code often uses traditional I/O stack for checkpointing
- Using **GLEAN** Small code tweaks plus configuration adjustments led to **15x** performance improvement for checkpoint operations.
- Achieved **160 GB/s** for HACC production simulations on Mira BG/Q system
Large-scale Parallel Analysis of Applications with the DIY Library

DIY – Do It Yourself

- Large-scale parallel analysis (visual and numerical) on HPC machines
- For scientists, visualization researchers, tool builders
- *In situ*, co-processing, post-processing
- Data-parallel problem decomposition
- MPI + threads hybrid parallelism
- Scalable data movement algorithms
- Runs on Unix-like platforms, from laptop to supercomputer (including all IBM and Cray HPC leadership machines)
Examples of using DIY

IMAGE SEGMENTATION IN POROUS MEDIA

Left: 3D image of a granular material (flexible sandstone) acquired at ALS (by Michael Manga and Dula Parkinson). Data: 8.4 billion points: $2560 \times 2560 \times 1276$.

LBNL (Dmitriy Morozov and Patrick O’Neil) developed tools for segmentation and connectivity analysis of granular and porous media using DIY.

Right: segmentation of the material identifies individual grains.

TESSELLATION-BASED DENSITY ESTIMATION COSMOLOGY AND ASTROPHYSICS

Three representations of the same halo. From left to right: original raw particle data, Voronoi tessellation, and regular grid density sampling.

Left and center: Cross sections of CIC (cloud-in-cell) and much more accurate TESS-based density estimators. Right: Strong scaling for grid sizes ranging from 1024^3 to 8192^3 (0.5 trillion).
Science Problem often Require Specialized Data Management Techniques

Problem: detection of ice-calving events

- Large-scale calving events (free-floating icebergs and ice fracture) are of scientific interest to study global climate change
- Typical iceberg is 6x the size of Manhattan
- Scientific simulations are developed as part of the BISICLES partnership (Dan Martin)
- Simulation is AMR-based ice sheet modeling using Chombo

Goal

- Identify events during the simulation runs -> in situ/real-time for every time step

Technical approach

- Develop Parallel Connected Component Labeling (PCCL) for in situ AMR data
- Approach

Result

- Great speedup (up to 6x) at larger per-process data sizes relative to previously used multi-phase CCL (repeated scans)
SDAV Future Outlook

- **Experience with *in situ* processing has been very successful**
 - Typically less than 1% of simulation time used for *in situ* feature extraction
 - In-memory code-coupling, in-memory workflow management, and *in situ* indexing and search capabilities help minimize data movement
 - *In situ* visualization and analysis methods allow dynamic exploration of data and avoid writing full-resolution data
 - **We expect to continue and benefit from this approach**

- **Scalability has been successful**
 - Many SDAV tools scaled to hundreds of thousands of cores
 - Many SDAV tools took advantage of GPUs when available, especially Vis tools
 - Many tools managed to reduce their memory use
 - **We see a clear path for taking advantage of future architectural characteristics**

- **Burst buffers may be useful for**
 - Checkpoint restart
 - Fast read - staging of data
 - Extension of memory
 - Extension of storage
 - **We expect to benefit greatly from burst buffers in the SciDAC3 time frame**
SDAV Future Outlook

- **Hardware Gap**: generally high concurrency platforms are mostly designed with other target applications (e.g. simulation-> high flops, low memory)

- **Algorithmic Gap**: generally data analysis algorithms have been traditionally executed in post processing and therefore less research has been focused on extreme parallelism

- New algorithmic research needed:
 - New data structures that reduce memory usage
 - New algorithmic structure that better exploits GPUs
 - New algorithmic models that minimize communications
 - How to exploit opportunities given by deep memory hierarchies?
 - How can we better coordinate with I/O infrastructures?
Extra slides
Data Management Tools

- **I/O Frameworks**
 - **ADIOS**: provides a simple, flexible way for scientists to describe the data in their code, and based on that to provide efficient I/O, and in situ data processing
 - **Darshan**: captures an accurate picture of application I/O behavior
 - **Parallel netCDF**: a library providing high-performance I/O while still maintaining file-format compatibility with Unidata's NetCDF
 - **ROMIO**: is a high-performance, portable implementation of MPI-IO
 - **ViSUS/IDX**: Provides data streaming techniques for progressive processing and visualization of large surface and volume meshes

- **In Situ Processing**
 - **GLEAN**: is an extensible framework that takes system characteristics into account in order to facilitate simulation-time data analysis and I/O acceleration
 - **DIY**: Provides scalable building blocks for data movement tailored to the needs of large-scale parallel analysis workloads
 - **DataSpaces**: facilitates in situ code coupling using a shared-space abstraction
 - **EvPath**: is an event transport middleware layer providing processing over virtual data paths

- **Indexing / Compression**
 - **FastBit**: A very fast indexing method based on compressed bitmap representation specially suitable for scientific data
 - **ISABELA**: a tools for lossy but highly accurate (> .99 correlation) compression of spatio-temporal scientific data
Analysis and Visualization tools

• Analysis and Visualization Frameworks
 • VisIt: is an Open Source, interactive, scalable, visualization, animation and analysis tool.
 • ParaView: is an open-source, multi-platform data analysis and visualization application.

• Analysis and Visualization Libraries
 • ExMage: provides in situ pathtube generation and visualization.
 • TALASS: is a collection of routines for parallel and distributed processing of particle data.
 • Ultravis-P: is a collection of routines for parallel and distributed processing of particle data.
 • MSCEER: is a set of tools and libraries for feature extraction and exploration in scalar fields.
 • IceT: is a high-performance sort-last parallel rendering library that provides the unique ability to generate images for tiled displays.
 • NDDAV: is an interactive analysis framework for high-dimensional data.
 • VTK: is an open-source system for 3D computer graphics, image processing and visualization.
Analysis and Visualization tools

- **Multi-/Many-core Visualization Libraries**
 - **Dax**: The Dax Toolkit supports the fine-grained concurrency for data analysis and visualization algorithms required to drive exascale computing.
 - **EAVL**: is the Extreme-scale Analysis and Visualization Library that expands traditional data models to support current and forthcoming scientific data sets.
 - **PISTON**: is a cross-platform software library providing frequently used operations for scientific visualization and analysis.

- **Statistics and Data Mining**
 - **NU-Minebench**: is a data mining benchmark suite containing a mix of several representative data mining applications from different application domains.
 - **Importance-Driven Analysis**: is a tool that uses a newly-designed spatial data structure, named parallel distance tree, to enable highly scalable parallel distance field computing.