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Progress Closure HiD Complexity Inverse Arch

High Dimensionality and UQ

Dimensionality of UQ problem is the number of degrees of
freedom required to represent uncertain model inputs
and/or parameters

Number of parameters
Karhunen-Loève expansion (KLE) for random fields

Hi-D challenge in UQ: high-dimensional integration

We discuss advances in
Local KLE

Reduced KLE dimensionality for random field in subdomains
Basis adaptation

Isometric transformations to low-dimensional subspaces
Low rank sparse tensors

Combinations of low-D integrals
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Dimensionality Reduction via Local KLE
SNL, Purdue, ETH, U.Utah Karhunen Loève Expansion

We wish to solve PDEs such as{
−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D,
u = g(x) x ∈ ∂D.

Parameterize the random field a(x, ω) using KLE

a(x, ω) ≈ a(x, Z) = µa(x) +

d∑
i=1

√
λiψi(x)Zi(ω).

Divide D into a set of non-overlapping subdomains D(i), i = 1, . . . ,K

The original problem on the full domain can be solved in each
subdomain with proper coupling conditions at the interfaces.

The collection of the subdomain solutions is equivalent to that of the
original problem in the global domain, i.e.,

u(x, ω) =
K∑
i=1

u(i)(x, ω)ID(i)(x),
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Local KLE – Eigenstructure
We represent the restriction of the
input process a(x, ω) in the
subdomain D(i) as

a
(i)

(x, ω) ≈ µ(i)
a (x) +

d(i)∑
j=1

√
λ
(i)
j ψ

(i)
j (x)Z

(i)
j (ω)

The decay rate of the eigenvalues
depends critically on the relative
correlation length.

The rel. correl. length on each subdomain
is larger than that on the full domain.

Local KL eigenvalues decay
faster

a(i)(x, ω) parameterized w/ a
smaller number of random
variables, thus d(i) � d
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Global Eigenvalues

Local Eigenvalues on 8 × 8  subdomains

Local Eigenvalues on 16 × 16  subdomains

Local Eigenvalues on 32 × 32  subdomains

Decay of eigenvalue magnitudes

SNL Najm QUEST 6 / 32



Progress Closure HiD Complexity Inverse Arch

Local KLE – Algorithm

Off-line phase

In parallel Build (independently)
PCE surrogate on each
subdomain D(i)

For linear PDE each random
realization requires ndof:∂D(i) + 1

On-line phase

Generate a realization of the
radom field on the global domain

Project global field onto each
subdomain to obtain parameters
Z(i) of local KLE a(i)(x, Z(i))

Evaluate local PCE at local
random parameters Z(i)

Generate solution on each
subdomain by solving global
interface problem Error vs. # sub-domain solves
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Basis Adaptation to Quantities of Interest – USC

QoIs in hi-D systems are frequently low-dimensional

We developed a procedure for basis discovery/adaptation
permits efficient and accurate approximation within a
low-dimensional subspace in which the QoI is concentrated

Using Gaussian parameterization of the uncertain inputs,
Isometry is first applied to induce a desired structure in the
representation of the QoI

1st-order terms in one dimension
diag. quadratic form w/ 2nd-order terms; match target CDF

Reduction is then achieved through projection of the
resulting representation

Reduced model captures:
the probabilistic content of the QoI
its functional dependence on the original parameterization
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Basis Adaptation Demo – Convective Heat Transfer

Consider a 2D domain with flow past random heated
inclusions, described in high stochastic dimension

Flow past thermal inclusions. The rods have spatially varying thermal conductivities.

An upscaled effective stochastic porous medium is
computed. The QoI at every spatial point is the
homogenized permeability and conductivity.

permeability and conductivity are statistically dependent.
can be evaluated as functions of the fine scale randomness.
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Basis Adaptation to Quantities of Interest – Demo

Upscaled stochastic permeability
verified at one spatial point.

Upscaled stochastic conductivity
verified at the same spatial point.

Basis adaptation makes it feasible to evaluate upscaled
properties at each spatial location as function of fine scale
uncertainty.
Solve a number of low-stochastic-dimension UQ problems
instead of one high-D problem
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Fast Evaluation of MP Integrals (FEMPI) — Quantum Chemistry
SNL, UIUC ASCR-BES Partnership

Computational Challenge:

Accurate computational prediction of key molecular
properties requires ab initio all-electron theories.
Initial focus on vibrational and electronic structure integrals
Integrands involve series of tensor contractions and dense
matrix manipulations — Nonscalable!
Better scaling achieved via enhancements of Monte-Carlo.

QUEST:
Improve integration efficiency and scalability

Advanced hi-D function representations used in UQ
Low rank sparse tensor representations

Replace hi-D integral with a number of low-D integrals
Evaluate using sparse quadrature
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Vibrational Energy integral – Water Molecule – XVH2
Main approach: low-rank approximation of integrand:

f(x) ≈
R∑
i=1

m∏
k=1

fki (x̃k), x̃k ∈ x = (x1, . . . , xd), ∪mk=1x̃k = x

High-dimensional integral is estimated via several low-d integrals∫
Ωx

f(x)dx
low-rank
≈

R∑
i=1

m∏
k=1

∫
Ωx̃k

fki (x̃k)dx̃k
quad.
≈

R∑
i=1

m∏
k=1

Q∑
q=1

wqf
k
i (x̃qk)

E.g., second-order correction to zero-point energy (6D):

E
(2)
0 =

∫
e−||ω

Tx||2∆V (x)H(x,x′)e−||ω
Tx′||2∆V (x′)dxdx′
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Ongoing work:

Singular integrals from MP2 theory.
Exponential sum apprx + low-rank.

Automatic detection of groupings x̃k
and sparsity within them.

Scale up to larger systems.
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Model Complexity

Large-scale models require substantial computational
resources for solving the original deterministic problem

This can lead to infeasible costs for either intrusive or
non-intrusive/sampling-based UQ methods

We discuss advances in
Multifidelity UQ methods

Use of predictions from models at different levels of fidelity
Hierarchical calibration and model discrepancy

Use of model bias and discrepancy in statistical calibration
Adaptive sparse quadrature

Selection of computational samples for hi-D integration
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Multiple Model Forms in UQ – SNL

Given a clear hierarchy of fidelity:
Multifidelity forward UQ:

UQ for hi-fi model leveraging
cheaper low-fi models

Multifidelity inference:
Estimation of low-fi model
discrepancies

Given a non-hierarchical ensemble
of credible models:

Model probability – prior info
Bayesian model selection
Model averaging

Both hierarchy and peers
Leverage model selection and
multifidelity inference
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Multifidelity UQ Using Stochastic Expansions

High-fidelity simulations
can be prohibitive for use
in UQ

Low fidelity “design” codes
often exist that are
predictive of basic trends

Leverage LF codes w/ HF UQ
Global approximations of model discrepancy
Adaptive sparse grids:

Gen. sparse grids for LF & discrepancy levels
Greedy selection from grids: max ∆QoI/∆Cost
Refine discrepancy where LF is less predictive

Compressed sensing:
Target sparsity within the model discrepancy
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Hierarchical Calibration & Model Discrepancy – LANL

Hierarchical calibration addresses the relationship between
model discrepancy and parameter bias

Given different calibration examples with different bias

yi = η(x, θ + bi) + δi(x, θ + bi) + εi

e.g. climate model bias different at high vs. low latitudes

Employ a hierarchical model, reconciling the evidence of bias
Inferred discrepancy effects are better fit to problems
Diagn. of relationship bet. parameter bias & discrepancy
Additional source of uncertainty identifiable in UQ analyses
Capability has been in GPMSA, developing the clarifying
examples and framework of diagnostics for user adoption

SNL Najm QUEST 16 / 32



Progress Closure HiD Complexity Inverse Arch

Hierarchical Calibration Demo – Southern Ocean

Idealized southern ocean model
with two parameters

Calibration w.r.t. higher fidelity
Parallel Ocean Program (POP)
computations

LANL+NCAR

A number of metrics
Temperature, salinity, density
vs. depth
Vertical heat & salt transport

Hierarchical distribution
combines information from
different metrics
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Adaptive Sparse Quadrature (ASQ) – Duke/MIT

Non-Intrusive Pseudospectral projection
Sparse tensorization of 1-D quadrature formulae
Reduce number of simulations, improve accuracy

Adaptivity:
Progressive construction with cost control
Robust error indicator to guide adaptation
Nested hierarchical approximation
Sensitivity-based directional refinement

Application to forward UQ in Gulf of Mexico modeling
Challenges with failed computational samples

both ASQ & MC-LHS
Use L2-misfit constrained L1-norm minimization (BPDN)

Estimate QoIs: sparse learning from available samples
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UQ for Circulation in Gulf of Mexico

Impact of uncertainty in:
Initial conditions (4 dims)
Wind stress (4-dims)

Time-dependent EOFs

on circulation in Gulf of Mexico

Eigenvalue decay – SSH

mode index
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Mean (left) and STD (right) of sea surface height (SSH) at day 30
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Statistical Inverse Problems

Statistical inversion is used for data-based estimation of
model parameters/inputs with quantified uncertainty

Inverse problems are hard!
Typically ill-posed; ill-conditioned
High-dimensionality
Forward model complexity

We discuss select recent advances in Bayesian inversion
Optimal experimental design (OED)

Identify optimal sensor placement for geophysical inversion
Surrogates & Markov chain Monte Carlo methods

Adaptive local surrogates
Parallel MCMC methods
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Scalable algorithms for optimal exptl design (OED)
Large-scale Bayesian inverse problems UT

Context: Inference of parameter fields w/ quantified uncertainty

OED asks the “outer loop” question:
How to choose sensor locations so that the inferred
parameter field uncertainty is minimized?

In its full generality, this is intractable:
Inner problem alone is an infinite dimensional Bayesian
inverse problem

Approach:
Represent covariance by inverse Hessian of negative log
posterior (Laplace approximation)
Invoke fast randomized trace estimators
Employ techniques from PDE-constrained optimization

Result: OED method whose cost–measured in forward PDE
solves–scales independent of parameter/sensor dimension
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Formulation of OED for Bayesian inversion
Hessian/PDE-constrained optimization problem

Seek an experimental design w (e.g., sensor locations) to
collect data d to minimize average posterior variance

OED problem:
Minimize average variance given by trace of inverse
Hessian, evaluated at maximum a posteriori solution of
inverse problem m∗:

min
w

Ed

{
trace

[
H−1

(
m∗(w),w;d)

] }
Sample averaging to approximate expectation over d

Randomized trace estimation of H−1
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A-optimal sensor placement for inferring
log-permeability in subsurface flow (SPE model)

Posterior variance with various sensor placements

Optimal Sub-optimal Sub-optimal

Inference with the optimal design (parameter dim ∼ 104)

True parameter Posterior mean Posterior sample
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Asymptotically Exact MCMC MIT
Earlier times Later times

Inference in computationally intensive models is essentially
intractable without surrogates

Key questions: Where should a surrogate be accurate? How to
construct it? Should it depend on the data? How does error in
the surrogate corrupt inference?

Our approach: incremental and asymptotically exact
construction of posterior-focused model approximations
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Asymptotically Exact MCMC – Surrogates MIT

Framework includes several different local approximation
schemes: linear, quadratic, Gaussian process

Accuracy versus cost (below); orders of magnitude speedups

102 103 104 105

Total number of evaluations

10 2

10 1

100

R
e
la

ti
v
e
 c

o
v
a
ri

a
n
ce

 e
rr

o
r

True model

Linear

Quadratic

GP

Recent developments:

Surrogates coupled with more sophisticated (gradient and
Hessian-exploiting) MCMC proposals

Parallel MCMC chains, sharing a common pool of model
evaluations

SNL Najm QUEST 25 / 32



Progress Closure HiD Complexity Inverse Arch

Parallel MCMC with Surrogates MIT

Build a common pool of model runs across parallel workers

Approximation guaranteed to target the correct distribution; use
effective sample size (ESS) to measure efficiency

ESS per CPU-sec usually constant with simple parallel MCMC

Instead, it increases dramatically: chains “borrow strength”

Cost of a computationally intensive contaminant transport
inverse problem reduced from 200 hours to 30 minutes
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Architecture Awareness

UQ on massively-parallel heterogeneous architectures
Scalability – Load balancing, communication, synchrony
MPI, OpenMP, GPU/. . .
Memory utilization
Parallel I/O – data
Fault tolerance and resilience

Consequences:
UQ problem formulation, algorithms, software

We discuss our practice & vision in architecture-aware UQ
UQ libraries
Non-intrusive/sampling-based UQ
Intrusive stochastic-Galerkin UQ
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Architecture Awareness – Current Practice – SNL

We lower the bar for UQ on advanced architectures
Large compute ensembles on leadership-class machines

Multilevel optimized partitioning & scheduling
Relax reqmt to converge all simulations for all partitions

Fault tolerance, failure mitigation & restart

We ease UQ adoption via usability features/enhancements
Library embedding of UQ services in applications

Embed in familiar apps; eliminate custom interface code
Simplify parallel execution; e.g. FELIX/Dakota (PISCEES)

Rapid prototyping and integration with scripting languages

We invest in emerging capabilities, directly or leveraged
Advanced fault tolerance (ASCR UQ)
Advanced UQ workflows (QUEST/SUPER, MUQ DAGs)
Centralized accessibility (e.g., Github) to maximize
community adoption and involvement
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Forward Vision – Non-intrusive UQ
SNL

Leverage emerging runtime systems for task-based
parallelism management within QUEST tools

e.g. Legion, Charm++, HPX, Uintah
Migrate from imperative hybrid-MPI scheduling to
declarative parallelism models

Aggregate UQ and simulation workflow tasks within the
same runtime system, exposing new opportunities for
streamlining, asynchrony, etc.

Move toward loop reordering / embedded ensembles
Mappers control task delegation to hybrid hardware

– CPU, GPU, MIC
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Forward Vision – Intrusive UQ
SNL

Identify application partners for intrusive UQ methods
Additional dedicated investments for selected applications
Stochastic Galerkin methods
Hybrid Galerkin-Collocation methods

Different levels and types of intrusion, in terms of
Software (library linking)
Coupling strategy (multiphysics/multiscale UQ)
Parallel task scheduling (aggregation of runtime workflows)
The actual simulation/solver

Available intrusive and linear algebra libraries in Trilinos
Stokhos: stochastic Galerkin systems
Tpetra: serial and distributed parallel linear algebra
Kokkos: manycore performance portability
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Sparse Linear Stochastic Galerkin Solvers – SNL

Explore algorithmic constructions that show potential to keep
future hierarchy of HPC cores busy

Additive-multigrid/multilevel (physical/stochastic)
Phys. mesh coarse/fine on communication/compute cores
Decoupled stochastic prolongation/restriction operators
Higher-order stoch. levels =⇒ compute intensive cores

Recursive hierarchical matrix preconditioned inversion
Break up matrix hierarchically into smaller nested blocks
Each of which can be solved more easily and independently

Hybrid stochastic Galerkin/collocation approaches
Coupled intrusive/non-intrusive strategy
Target optimal use of computational architecture
Tradeoff solution samples of deterministic problem for
reduced-size/better-conditioned stochastic Galerkin system
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Closure

Presented select highlights of recent progress
High dimensionality
Model complexity
Statistical inversion
Architecture

We continue to
Refine and robustify QUEST algorithms and software to
address UQ challenges in large-scale problems
Address UQ needs of SciDAC application partnerships

quest-scidac.org
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