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Baryon Chemical Potential - 

RHIC

In a heavy-ion collision (HIC), a dense medium of quarks and gluons is cre-
ated which subsequently expands and cools down. After equilibration, this
cooling process is characterized by a trajectory in the space of tempera-
ture T and baryon chemical potential µB. The system eventually crosses
the “phase boundary” between the partonic and hadronic phase of strong-
interaction matter. Shortly after this, hadrons are expected to form at the
so-called freeze-out point (Tf , µ

f
B). This point can be varied in HIC exper-

iments by changing the beam energy. In the beam energy scan (BES) at
RHIC, a freeze-out line is mapped out. The expectation is that this line
is close to the QCD phase boundary. Information on the phase structure,
i.e. possibly the existence of a critical point as well as a line of first order
phase transitions at higher energy, can be obtained by analyzing physical
observables on the freeze-out line. By examining fluctuations of conserved
charges and their correlations, one tries to: (i) determine the freeze-out pa-
rameters [1], (ii) establish their relation with the QCD transition line and
(iii) hopefully find evidence for the existence of a critical point.
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We have calculated higher order cumulants of strangeness (χS2 ) fluctuations
and their correlations with baryon number (χBS11 ) and electric charge (χQS11 )
at µ = 0 and evaluated them in a next-to-leading-order Taylor expansion
in µB. For our simulations, we used the Highly Improved Staggered Quark
(HISQ) action with physical strange quark mass ms and degenerate up
and down quarks with ml=ms/20 corresponding to a pion mass of about
160 MeV. (
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χS2

(1)

We compare our results [2] to predictions of the hadron resonance gas
model having different strange hadron content. The first formulation in-
cludes only observed hadrons (PDG-HRG) and is very successful in describ-
ing the hadronic phase. However, near the cross-over region it fails to
match lattice QCD results. This is why we applied a second formulation
which takes additional strange hadrons from quark models into account
(QM-HRG). The shaded regions in the plots indicate the chiral crossover
region Tc = 154(9) MeV. On the r.h.s., we compare experimentally ex-
tracted values of (µfS/µ

f
B), (µ

f
B/Tf) with lattice QCD results for µS/µB.

The results are shown for µB/T = µfB/Tf . The temperature range where
lattice QCD results match with µfS/µ

f
B provides values for Tf .

We conclude that these unobserved strange hadrons become thermodynam-
ically relevant close to the QCD crossover region and lead to a significant
reduction in the chemical freeze-out temperature. These calculations cur-
rently get extended to 6th order [3].

2. Additional strange hadrons

In order to study the QCD phase diagram, it is mandatory to consider phys-
ical observables which reflect the thermal conditions of the system, i.e. are
sensitive to the inner structure of the fireball as created in heavy-ion colli-
sion experiments. Fluctuations of globally conserved charges (B, Q, S) vary
strongly between the confined and deconfined phase, thus, can be calculated
in lattice simulations to distinguish between the phases of QCD. In experi-
ment fluctuations can be studied at the time of freeze-out, i.e. are obtained
from measured ensembles of conserved charges in several heavy-ion collision
events. The idea of these fluctuation probes of the QCD phases is based on
a simple picture: In the Hadron Resonance Gas (HRG) model all hadrons
have electric charge of ±1 or ±2, while in the quark-gluon plasma the unit
of charge is ±1/3 or ±2/3. Thus, fluctuations of charged particles in or out
of a sub-volume in the fireball produces a larger mean square fluctuation
of the net electric charge while the system is in the hadronic phase. The
coefficients in the Taylor series of the pressure
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are higher orders of charge fluctuations and correlations given by

χBQSijk,µ =
1

V T 3

∂i+j+k lnZ(V, T, µB, µQ, µS)

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
µ={µB, µQ, µS}

, (3)

which can be directly related to physical observables as measured in heavy-
ion collisions. In particular, these generalized susceptibilities are related to
higher order moments: mean MX, variance σ2X, skewness SX and kurtosis
κX which are obtained by net charge fluctuations δNX =NX− 〈NX〉 for
each conserved charge X = B, Q, S in the thermodynamic ensemble.

1. Charge fluctuations and correlations

Higher order charge fluctuations require to calculate traces containing
fermion matrix inversions and derivatives. We estimate these traces using
the so-called random noise method. In this method, the trace is replaced by
a sum over N random noise vectors ηk each with properties of white noise

Tr
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For inverting the fermion matrix Q, we use a Conjugate Gradient (CG) solver
(Q−1b = x). The convergence speed is dominated by small eigenvalues λi.
We can reduce the iteration count by computing an initial guess x0 for the
CG using the lowest Nev eigenvalues and eigenvectors qi. It is given by

x0 =

Nev∑
i=1

〈qi,b〉
λi

qi . (5)
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