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During the past few years single core performance was only driven by im-
proving Single Instruction Multiple Data (SIMD) capabilities as introduced
by Intel in 1996 with the x86 Multi Media Extension (MMX). It enabled to
process two floating-point operations in a single instruction. As this vector
register length increased over time to 512-bit, compiler technologies could
not catch up to take advantage of large vector instructions, hence, leaving
a huge gap for possible optimizations. At present, this gap has to be closed
by hand using low-level architecture specific languages.
We have developed a C++ template based library for Lattice Quantum Chro-
modynamics (QCD) simulations using Staggered Fermions. It takes advan-
tage of so-called low-level compiler intrinsics. We support nearly all available
CPU instruction sets e.g. SSE, AVX, AVX512 and can easily support future
architectures with vector registers larger than 512-bit.
In the following, we describe our implementation of the Highly Improved
Staggered Quark (HISQ) formulation as well as specific optimizations [1].
A set of programs described here have been used in a calculation of con-
served charge fluctuations (see neighboring poster).
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For many Lattice QCD applications, a large number of fermion matrix in-
versions are performed on a single gauge field. In order to exploit reuse of
these gauge fields, we can apply the Dslash operation for multiple right-hand
sides (rhs) at once. Increasing the number of rhs from one to four more
than doubles the arithmetic intensity (Flop/byte) of the Dslash operation.

2. Solving multiple right-hand sides
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On SIMD CPUs it is more efficient to process several matrix-vector products
at the same time using a site-fusion method. A naive implementation could
possibly be to create a “Struct of Arrays” (SoA) object for 16 matrices as
well as for 16 vectors. One specific register then refers to the real or imag-
inary part of the same column gathered from all 16 vectors. However, we
decided to store the real and imaginary in an alternating order because this
is advantageous for the next Xeon Phi generation.
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4. Single Instruction Multiple Data

The key operation in many Lattice QCD simulations is the inversion of the
fermion matrix. It requires a 4-dimensional stencil which calculates the
product of a vector ν by a sparse matrix known as the Dslash operator and
stems from a discretized 4-dimensional derivative.
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1. Dslash operator
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3. Intel Xeon Phi
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#rhs 1 2 3 4 5 6

Flop/byte 0.80 1.25 1.53 1.73 1.87 1.98

[1] O. Kaczmarek et al., Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs. arXiv:1411.4439
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