
Architecture independentSIMDLibrary forLatticeQCD
Patrick Steinbrecher1, 2, F. Karsch1, 2, S. Mukherjee2, H. Ohno2, 3, P. Petreczky2, S. Sharma2 and M. Wagner4

NESAP

psteinbrecher@bnl.gov Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics www.usqcd.org

1Universität Bielefeld - Germany, 2Brookhaven National Laboratory - USA, 3University of Tsukuba - Japan, 4 Indiana University - USA

During the past few years single core performance was only driven by im-
proving Single Instruction Multiple Data (SIMD) capabilities as introduced
by Intel in 1996 with the x86 Multi Media Extension (MMX). It enabled to
process two floating-point operations in a single instruction. As this vector
register length increased over time to 512-bit, compiler technologies could
not catch up to take advantage of large vector instructions, hence, leaving
a huge gap for possible optimizations. At present, this gap has to be closed
by hand using low-level architecture specific languages.
We have developed a C++ template based library for Lattice Quantum Chro-
modynamics (QCD) simulations using Staggered Fermions. It takes advan-
tage of so-called low-level compiler intrinsics. We support nearly all available
CPU instruction sets e.g. SSE, AVX, AVX512 and can easily support future
architectures with vector registers larger than 512-bit.
In the following, we describe our implementation of the Highly Improved
Staggered Quark (HISQ) formulation as well as specific optimizations [1].
A set of programs described here have been used in a calculation of con-
served charge fluctuations (see neighboring poster).

Introduction

Memory

Memory

const. gauge fields η0η1η2η3η4η5η6 · · ·
random noise vectors

DS() DS_multi3(), , , ,

pro: much better arithmetic intensity

con: higher register pressure

For many Lattice QCD applications, a large number of fermion matrix in-
versions are performed on a single gauge field. In order to exploit reuse of
these gauge fields, we can apply the Dslash operation for multiple right-hand
sides (rhs) at once. Increasing the number of rhs from one to four more
than doubles the arithmetic intensity (Flop/byte) of the Dslash operation.

2. Solving multiple right-hand sides

︸

︷︷

︸

sites

()
,
,
,

,
,
, ()× matrix

real imag

vector

On SIMD CPUs it is more efficient to process several matrix-vector products
at the same time using a site-fusion method. A naive implementation could
possibly be to create a “Struct of Arrays” (SoA) object for 16 matrices as
well as for 16 vectors. One specific register then refers to the real or imag-
inary part of the same column gathered from all 16 vectors. However, we
decided to store the real and imaginary in an alternating order because this
is advantageous for the next Xeon Phi generation.

even oddi cache linei

boundary

1 3 5

1st entry

1 3 5

2nd entry

1

0 2 4 0

2nd entry

2 4

1st entry

0

permute

0 0

center

4. Single Instruction Multiple Data

The key operation in many Lattice QCD simulations is the inversion of the
fermion matrix. It requires a 4-dimensional stencil which calculates the
product of a vector ν by a sparse matrix known as the Dslash operator and
stems from a discretized 4-dimensional derivative.

wn =
∑4
µ=0

��
Un,µvn+µ − U†

n−µ,µvn−µ
�
+
�
N n,µvn+3µ − N †

n−3µ,µvn−3µ

��
complex 3-dim vector

complex 3×3 matrix U(3) matrix

ν

µ matrix

vector

1146 Flop/site

1. Dslash operator

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

Core

TD

GDDR MC
GDDR MC
GDDR MC
GDDR MC

GDDR MC
GDDR MC
GDDR MC
GDDR MC

PCIe

Instruction Decode

SPU VPU

Vector
Registers

Scalar
Registers

32KB Ins.
L1 Cache

512KB L2 Cache

32KB Dat.
L1 Cache

microarchitecture

.

x86 based many-core processor
runs a Linux µOS
in-order execution
up to 61 cores at 1.238 GHz
core boost for 7120 series

parallelism through
large 512-bit SIMD registers
4 hardware threads per core

bandwidth benchmark

149 GB/s7120P
140 GB/s5110P

peak fp32/fp64

2.42/1.21 TFlop/s

fully coherent cache

3. Intel Xeon Phi

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14 16

Dslash 32
3
×8

GFlop/s

#rhs

fp32, ECC

Intel Xeon Phi 5110P

Intel E5-2670 2.60GHz 16C

#rhs 1 2 3 4 5 6

Flop/byte 0.80 1.25 1.53 1.73 1.87 1.98

[1] O. Kaczmarek et al., Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs. arXiv:1411.4439

5. Dslash performance

