
Awards of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-
AC02-06CH11357. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research also used resources of the National Energy Research Scientific Computing Center, a

DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Activities and Impacts

Background

v Developing Electron-Correlated Methods for Excited State Structure
and Dynamics in the NWChem Software Suite BES SciDAC
Partnership (PI: Christopher J. Cramer)

v Goal: Accelerate NWChem performance by implementing thread-level
parallelism on the Intel Phi many-core architecture.

v Examined two important NWChem modules: Coupled Cluster Triples
Algorithm CCSD(T) & Fock Matrix Constructions of TEXAS integral.

v Optimization insights shared with community via NERSC training

PROGRESS:

SUPER Institute collaboration to integrate OpenMP parallelism
§  Native mode optimization to prepare for next-generation NERSC8

Cori
§  Threading is essential to exploit full capability of MIC architecture
Performance of triples part of CCSD(T) improved 65x over original flat
MPI implementation
§  Flat MPI constrained to single process because of memory limitation
Performance of Fock matrix construction improved 1.64x over original
flat MPI
§  Flat MPI constrained to 60 MPI processes

112

62
30

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
un

 T
im

e
(s

ec
on

ds
)

OMP_NUM_THREADS

Optimized OpenMP

Total Time
Time in Loop Nests
Time in GetBlock

Optimized OpenMP CCSD(T) run time, showing an overall speedup
of 2.5x compared with the original threaded implementation, and a
65x speedup over the flat MPI version which is limited to a single
process due to memory constraints

Performance of Fock Matrix Construction using our three
approaches. The flat MPI implementation is limited to 60
processes, while the threaded version can use all 240 hardware
thread contexts and results in a 1.64x speedup

72

71

183

54

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

To
ta

l R
un

 T
im

e
 (s

ec
on

ds
)

Total Hardware Thread Concurrency

Fock Matrix Construction Time

Flat MPI
OpenMP #1 (integrals)
OpenMP #2 (module-level)
OpenMP #3 (OpenMP tasks)

NWChem OpenMP Threading

Hongzhang Shan, Bert de Jong, Lenny Oliker,, Samuel Williams
Lawrence Berkeley National Lab

Background
v MPAS (Model for Prediction Across Scales) is a multi-scale climate

modeling framework developed at LANL and NCAR.

v MPAS-Ocean core uses Voronoi tessellation based unstructured grids.
It has the benefits of providing multi-resolution and quasi-uniform grid
properties at the same time to facilitate better simulations.

v Unstructured grids have a negative impact on performance due to
factors such as non-obvious domain decomposition, parallel load
imbalance, unordered data and irregular memory access patterns.

v MPAS-Ocean utilizes deep halo regions on the grid. These magnify
the load imbalance factor significantly.

v MPAS-Ocean performance was analyzed on DOE supercomputer,
Edison, a Cray XC30 at NERSC.

Performance Optimization and Results
v Developed a weighted halo-aware grid partitioning scheme based on

iterative refinement of the partitions using halo information. Using
hence generated grid partitioning resulted in improved scaling at high
concurrencies.

v Implemented Space Filling Curve based data reordering (Hilbert SFC,
Morton ordering) for the grid elements to improve data locality.

v Performance improvement due to the new partitioning scheme is more
significant at high concurrencies due to better load balancing.

v Performance improvements due to data reordering is significant at low
concurrencies, but the effect diminishes with increasing concurrency.

v With the new partitioning scheme and data reordering, we achieved
overall performance speedup of up to 2.2x for the MPAS-Ocean core.

v Future work involves incorporation of multi-level OpenMP threading for
improved parallelism and scaling. It also involves vectorization and
porting the ocean core onto the many-core Intel Phi processors.

Reduction in the number of cache
misses using the SFC-based data
reordering

Runtime speedup using SFC
ordered data relative to the
original data ordering

MPAS-Ocean

Abhinav Sarje, Samuel Williams, Leonid Oliker
Lawrence Berkeley National Lab

Douglas Jacobsen
Los Alamos National Lab

Sukhyun Song, Jeffrey Hollingsworth
University of Maryland

Kevin Huck, Allen Malony
University of Oregon

NWChem CCSD
Data-flow Implementation

Anthony Danalis, Heike McCraw, George Bosilca
University of Tennessee

Objective

v Increase scalability and performance by porting
CCSD of NWChem to a data-flow representation.

Accomplishments:

All time-consuming routines of NWChem’s CCSD have been
converted to a dataflow representation.

Modified version of CCSD was integrated into NWChem for
seamless execution.

Integrated version of modified CCSD achieves more than 2x
performance improvement.

Beyond performance gains, the dataflow version of NWChem can
utilize PaRSEC’s performance analysis tools that have task level
granularity.

Performance improvement of dataflow version (executing over PaRSEC)
in comparison to original MPI code for entire CCSD. The modified code

yields 2x higher performance and keeps scaling until all 16 cores of all
64 nodes have been utilized in contrast with original code.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
 T

im
e
 (

se
c)

Cores/Node

Original 64
PaRSEC 64

Analysis and Visualization of
MPAS-Ocean Performance Data

Kevin Huck, (SUPER), Hank Childs (SDAV), Allen Malony (SUPER)
University of Oregon

Background
v SUPER and SDAV collaboration.

v Objective was to Map TAU performance measurements to the MPAS-
Ocean spatial domain to assist in optimization of partition strategies

Progress and Accomplishments
v Demonstrated that the load imbalance problem is correlated with

variability among partition block size due to relatively large halo
regions

v Visualizations also show that vertical depth, coastlines and number of
neighbors likely affect computation, communication times

v Hindsight partition refinement using block+halo weights reduced mean
MPI_Wait times by 40%, and overall execution time up to 15%

v Workshop publication: Huck et al., “Linking Performance Data into
Scientific Visualization Tools”, Visual Performance Analytics at SC’14

Impacts
v Successfully integrated TAU performance measurement data with

application scientific data in VisIt

v Contributed directly to reduction in execution timer, for example up to
15% for 60km resolution case on 256 processors.

min: 473, max: 846 Total Cells per Block min: 535, max: 771

min: 83s, max: 250s Computation Time min: 98s, max: 240s

min: 27s, max: 190s MPI_Wait Time min: 9s, max: 150s

Original Partitions Refined Partitions

•  Xolotl outperformed Paraspace on full problem, scaled well when increasing
problem size, but…
–  …Paraspace computes more time steps at higher accuracy

(hypothesized)
–  Currently testing relaxed Paraspace solver tolerances that reduce

number of time steps but may also reduce accuracy
•  Working on threading/GPU optimizations for Xolotl

–  Targeting 2D and 3D problems
–  Little improvement expected for 1D problems including the one used in

this performance comparison

Time required to run 10 Xolotl time
steps, Hyper-threading enabled

Time required to run 5 Paraspace output
time steps, Hyper-threading enabled

Figure 6: Number of intermediate PARASPACE time steps per interval between output time
steps.

Metric Xolotl PARASPACE
Elapsed time (s) 520.32 3548.54
Number of time steps 104 227
Throughput (time steps/s) 0.200 0.0640

Table 2: Time required to simulate the full He retention in W100 problem on one compute node.

1. when producing the same number of results; and
2. when executing approximately the same number of time steps.

In the first case, the programs are solving the same scientific problem and producing scientifically
equivalent results, but it can be argued that they are not doing equivalent amounts of work (in
terms of number of time steps). In the second case, the two programs are doing the same amount
of work in terms of time steps, but Xolotl is producing more scientific results. Furthermore, it is
interesting to compare performance when restricting Xolotl to use the same computation resources
as PARASPACE (one compute node), but also to interesting to compare when Xolotl is allowed to
use as many compute nodes as it can support.

Table 2 shows the time required for both programs to complete a simulation run with the
same number of output steps (i.e., the scenario where they are producing scientifically equivalent
results). Looking at the results from the perspective of the time required to compute equivalent
scientific results, Xolotl was 6 times faster than PARASPACE (8:40.32 vs. 59:08.54) when running
on the same hardware. Table 2 also indicates the number of actual time steps computed by each
program during the run, and program’s throughput in terms of timesteps per second. This last
metric is useful for making the comparison described in the second scenario, because it normalizes
the performance measure to be independent of the number of time steps computed. From this
perspective, Xolotl’s throughput was 3.12 times greater than that of PARASPACE when computing
our full problem on the same hardware.

Despite our attempts to reconcile di�erences between the two programs, two factors should still
be taken into account with respect to these timing and throughput results. First, at each output

12

Time required to simulate full He retention in W100 problem on one
Eos compute node

Time required to
simulate full He
retention in W100
problem on one Eos
compute node with
varying numbers of
grid points

•  Recently compared Xolotl performance and scalability against that of
Paraspace
–  Paraspace: PARAllel SPAtially-dependent Cluster Evolution

•  Implements parallel cluster dynamics with spatial dependence
by solving reaction diffusion equation with incident flux

•  Mature code, but limited to 1D and OpenMP only
–  Used both programs to simulate same simulation problem

•  Helium retention in Tungsten diverter wall with incident He flux
of 4x1025 He/m2/s for 1x10-6 seconds

•  Used several 1D data discretizations (mainly nx=256, dx=0.25)
•  Ran on Eos, a Cray XC30 within the Oak Ridge Leadership

Computing Facility
–  Two eight-core Intel E6-2670 processors at 2.6GHz per

node, Hyper-Threading supported
–  64 GB SDRAM per node
–  Aries interconnection network

•  Determined best run-time configuration
–  Xolotl: 32 single-threaded processes per node (Hyper-Threading

enabled), process affinity to NUMA node, and 16 processes per
NUMA node

–  Paraspace: 32 threads (Hyper-Threading enabled), affinity to
NUMA node

Xolotl/Paraspace
Performance Comparison

Phillip C. Roth
Oak Ridge National Lab

•  Xolotl plasma surface interactions simulator
–  New code being developed as part of Plasma

Surface Interactions FES SciDAC Partnership
(PI: Brian Wirth)

–  Continuum model for solving cluster dynamics
advection-diffusion-reaction equation with
incident flux

–  Support for 1D, 2D, and 3D problems
–  Uses PETSc solver
–  MPI only
–  Open source, publicly available via

SourceForge

