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Activities and Impacts 

Background 

v Developing Electron-Correlated Methods for Excited State Structure 
and Dynamics in the NWChem Software Suite BES SciDAC 
Partnership (PI: Christopher J. Cramer) 

v Goal: Accelerate NWChem performance by implementing thread-level 
parallelism on the Intel Phi many-core architecture. 

v Examined two important NWChem modules: Coupled Cluster Triples 
Algorithm CCSD(T) & Fock Matrix Constructions of TEXAS integral. 

v Optimization insights shared with community via NERSC training 

PROGRESS: 

SUPER Institute collaboration to integrate OpenMP parallelism 
§  Native mode optimization to prepare for next-generation NERSC8 

Cori 
§  Threading is essential to exploit full capability of MIC architecture 
Performance of triples part of CCSD(T) improved 65x over original flat 
MPI implementation 
§  Flat MPI constrained to single process because of memory limitation  
Performance of Fock matrix construction improved 1.64x over original 
flat MPI  
§  Flat MPI constrained to 60 MPI processes 
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Optimized OpenMP CCSD(T) run time, showing an overall speedup 
of 2.5x compared with the original threaded implementation, and a 
65x speedup over the flat MPI version which is limited to a single 
process due to memory constraints 

Performance of Fock Matrix Construction using our three 
approaches. The flat MPI implementation is limited to 60 
processes, while the threaded version can use all 240 hardware 
thread contexts and results in a 1.64x speedup 
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NWChem OpenMP Threading 

Hongzhang Shan, Bert de Jong, Lenny Oliker,, Samuel Williams 
Lawrence Berkeley National Lab 

Background 
v MPAS (Model for Prediction Across Scales) is a multi-scale climate 

modeling framework developed at LANL and NCAR. 

v MPAS-Ocean core uses Voronoi tessellation based unstructured grids. 
It has the benefits of providing multi-resolution and quasi-uniform grid 
properties at the same time to facilitate better simulations. 

v Unstructured grids have a negative impact on performance due to 
factors such as non-obvious domain decomposition, parallel load 
imbalance, unordered data and irregular memory access patterns. 

v MPAS-Ocean utilizes deep halo regions on the grid. These magnify 
the load imbalance factor significantly. 

v MPAS-Ocean performance was analyzed on DOE supercomputer, 
Edison, a Cray XC30 at NERSC. 

Performance Optimization and Results 
v Developed a weighted halo-aware grid partitioning scheme based on 

iterative refinement of the partitions using halo information. Using 
hence generated grid partitioning resulted in improved scaling at high 
concurrencies. 

 

v Implemented Space Filling Curve based data reordering (Hilbert SFC, 
Morton ordering) for the grid elements to improve data locality. 

 

v Performance improvement due to the new partitioning scheme is more 
significant at high concurrencies due to better load balancing. 

v Performance improvements due to data reordering is significant at low 
concurrencies, but the effect diminishes with increasing concurrency. 

v With the new partitioning scheme and data reordering, we achieved 
overall performance speedup of up to 2.2x for the MPAS-Ocean core. 

v Future work involves incorporation of multi-level OpenMP threading for 
improved parallelism and scaling. It also involves vectorization and 
porting the ocean core onto the many-core Intel Phi processors. 

Reduction in the number of cache 
misses using the SFC-based data 
reordering 

Runtime speedup using SFC 
ordered data relative to the 
original data ordering 

MPAS-Ocean 

Abhinav Sarje, Samuel Williams, Leonid Oliker 
Lawrence Berkeley National Lab 

Douglas Jacobsen 
Los Alamos National Lab 

Sukhyun Song, Jeffrey Hollingsworth 
University of Maryland 

Kevin Huck, Allen Malony 
University of Oregon 

NWChem CCSD  
Data-flow Implementation 

Anthony Danalis, Heike McCraw, George Bosilca 
University of Tennessee 

Objective 

v Increase scalability and performance by porting  
CCSD of NWChem to a data-flow representation. 

Accomplishments: 

All time-consuming routines of NWChem’s CCSD have been 
converted to a dataflow representation. 

Modified version of CCSD was integrated into NWChem for 
seamless execution. 

Integrated version of modified CCSD achieves more than 2x 
performance improvement. 

Beyond performance gains, the dataflow version of NWChem can 
utilize PaRSEC’s performance analysis tools that have task level 
granularity. 

Performance improvement of dataflow version (executing over PaRSEC) 
in comparison to original MPI code for entire CCSD. The modified code 

yields 2x higher performance and keeps scaling until all 16 cores of all 
64 nodes have been utilized in contrast with original code. 
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Analysis and Visualization of       
MPAS-Ocean Performance Data 

Kevin Huck, (SUPER), Hank Childs (SDAV), Allen Malony (SUPER) 
University of Oregon 

Background 
v SUPER and SDAV collaboration. 

v Objective was to Map TAU performance measurements to the MPAS-
Ocean spatial domain to assist in optimization of partition strategies 

Progress and Accomplishments 
v Demonstrated that the load imbalance problem is correlated with 

variability among partition block size due to relatively large halo 
regions 

v Visualizations also show that vertical depth, coastlines and number of 
neighbors likely affect computation, communication times 

 

 

v Hindsight partition refinement using block+halo weights reduced mean 
MPI_Wait times by 40%, and overall execution time up to 15%  

v Workshop publication: Huck et al., “Linking Performance Data into 
Scientific Visualization Tools”, Visual Performance Analytics at SC’14 

Impacts 
v Successfully integrated TAU performance measurement data with 

application scientific data in VisIt  

v Contributed directly to reduction in execution timer, for example up to 
15% for 60km resolution case on 256 processors. 

min: 473, max: 846   Total Cells per Block    min: 535, max: 771 

min: 83s, max: 250s   Computation Time    min: 98s, max: 240s 

min: 27s, max: 190s       MPI_Wait Time        min: 9s, max: 150s 

Original Partitions                         Refined Partitions 

•  Xolotl outperformed Paraspace on full problem, scaled well when increasing 
problem size, but… 
–  …Paraspace computes more time steps at higher accuracy 

(hypothesized) 
–  Currently testing relaxed Paraspace solver tolerances that reduce 

number of time steps but may also reduce accuracy 
•  Working on threading/GPU optimizations for Xolotl 

–  Targeting 2D and 3D problems 
–  Little improvement expected for 1D problems including the one used in 

this performance comparison 

Time required to run 10 Xolotl time 
steps, Hyper-threading enabled 

Time required to run 5 Paraspace output 
time steps, Hyper-threading enabled 

Figure 6: Number of intermediate PARASPACE time steps per interval between output time
steps.

Metric Xolotl PARASPACE
Elapsed time (s) 520.32 3548.54
Number of time steps 104 227
Throughput (time steps/s) 0.200 0.0640

Table 2: Time required to simulate the full He retention in W100 problem on one compute node.

1. when producing the same number of results; and
2. when executing approximately the same number of time steps.

In the first case, the programs are solving the same scientific problem and producing scientifically
equivalent results, but it can be argued that they are not doing equivalent amounts of work (in
terms of number of time steps). In the second case, the two programs are doing the same amount
of work in terms of time steps, but Xolotl is producing more scientific results. Furthermore, it is
interesting to compare performance when restricting Xolotl to use the same computation resources
as PARASPACE (one compute node), but also to interesting to compare when Xolotl is allowed to
use as many compute nodes as it can support.

Table 2 shows the time required for both programs to complete a simulation run with the
same number of output steps (i.e., the scenario where they are producing scientifically equivalent
results). Looking at the results from the perspective of the time required to compute equivalent
scientific results, Xolotl was 6 times faster than PARASPACE (8:40.32 vs. 59:08.54) when running
on the same hardware. Table 2 also indicates the number of actual time steps computed by each
program during the run, and program’s throughput in terms of timesteps per second. This last
metric is useful for making the comparison described in the second scenario, because it normalizes
the performance measure to be independent of the number of time steps computed. From this
perspective, Xolotl’s throughput was 3.12 times greater than that of PARASPACE when computing
our full problem on the same hardware.

Despite our attempts to reconcile di�erences between the two programs, two factors should still
be taken into account with respect to these timing and throughput results. First, at each output
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Time required to simulate full He retention in W100 problem on one 
Eos compute node 

Time required to 
simulate full He 
retention in W100 
problem on one Eos 
compute node with 
varying numbers of 
grid points 

•  Recently compared Xolotl performance and scalability against that of 
Paraspace 
–  Paraspace: PARAllel SPAtially-dependent Cluster Evolution 

•  Implements parallel cluster dynamics with spatial dependence 
by solving reaction diffusion equation with incident flux 

•  Mature code, but limited to 1D and OpenMP only 
–  Used both programs to simulate same simulation problem 

•  Helium retention in Tungsten diverter wall with incident He flux 
of 4x1025 He/m2/s for 1x10-6 seconds 

•  Used several 1D data discretizations (mainly nx=256, dx=0.25) 
•  Ran on Eos, a Cray XC30 within the Oak Ridge Leadership 

Computing Facility 
–  Two eight-core Intel E6-2670 processors at 2.6GHz per 

node, Hyper-Threading supported 
–  64 GB SDRAM per node 
–  Aries interconnection network 

•  Determined best run-time configuration 
–  Xolotl: 32 single-threaded processes per node (Hyper-Threading 

enabled), process affinity to NUMA node, and 16 processes per 
NUMA node 

–  Paraspace: 32 threads (Hyper-Threading enabled), affinity to 
NUMA node 

Xolotl/Paraspace  
Performance Comparison 

Phillip C. Roth 
Oak Ridge National Lab 

•  Xolotl plasma surface interactions simulator 
–  New code being developed as part of Plasma 

Surface Interactions FES SciDAC Partnership 
(PI: Brian Wirth) 

–  Continuum model for solving cluster dynamics 
advection-diffusion-reaction equation with 
incident flux 

–  Support for 1D, 2D, and 3D problems 
–  Uses PETSc solver 
–  MPI only 
–  Open source, publicly available via 

SourceForge 


