Activities and Impacts

Xolotl/Paraspace Performance Comparison

Phillip C. Roth
Oak Ridge National Lab

Background
- Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite
- SDSC Supercomputer Partnership (PI: Christopher J. Cramer)
- Examined two important NWChem modules: Coupled Cluster Triples
- Performance of triples part of CCSD(T) improved 65x
- SUPER Institute collaboration to integrate OpenMP parallelism
 - Flat MPI only
 - Open source, publicly available via SourceForge

Objective
- Xolotl plasma surface interactions simulator
 - New code being developed as part of Plasma Interaction Surfaces FES SDSC Partnership (PI: Brian With)
 - Continuum model for solving cluster dynamics
 - Reaction-diffusion-reaction equation with incident flux
 - Support for 1D, 2D, and 3D problems
 - Uses PETSc solver
 - MPI only

Activities and Impacts
- Recently compared Xolotl performance and scalability against that of Paraspace
 - Paraspace: ParaSail SPAdes-dependent Cluster Evolution
 - Implements parallel cluster dynamics
 - reaction-diffusion-reaction equation with incident flux
 - Mature code, but limited to 1D and OpenMP only
 - Used both programs to simulate same problem simulation
 - Xolotl retention in Tungsten divertor wall with incident He flux of 4x10^15 H/atom/s for 1x10^6 seconds
 - Used several 1D code parallelizations (mainly nx=256, dx=0.25)
 - Ran on Eos, a Cray XC30 within the Oak Ridge Leadership Computing Facility
 - Two eight-core Intel E5-2670 processors at 2.6GHz per node, Hyper-Threading supported
 - 64 GB SDRAM per node
 - Xolotl outperformed Paraspace on full problem, scaled well when increasing problem size
 - Paraspace computes more time steps at higher accuracy (hypothesized)
 - Xolotl predicted Paraspace solver tolerances that reduce number of time steps but may also reduce accuracy
 - Working on threading/GPU optimizations for Xolotl
 - Targeting 1D and 3D problems
 - Little improvement expected for 1D problems including the one used in this performance comparison

NWChem OpenMP Threading

Honghoong Shin, Bert de Jong, Lorenz Ceder, Samuel Williams
Lawrence Berkeley National Lab

Background
- Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite
- SDSC Supercomputer Partnership (PI: Christopher J. Cramer)
- Examined two important NWChem modules: Coupled Cluster Triples
- Performance of triples part of CCSD(T) improved 65x
- SUPER Institute collaboration to integrate OpenMP parallelism
 - Flat MPI only
 - Open source, publicly available via SourceForge

Objective
- NWChem OpenMP Threading
- NWChem CCSD Data-flow Implementation
- MPAS-Ocean Performance Data

NWChem CCSD Data-flow Implementation

Anthony Davais, Heike McGehee, George Bosilca
University of Tennessee

Background
- NWChem's CCSD has been converted to a data-flow representation

Objective
- Increase scalability and performance by porting CCSD of NWChem to a data-flow representation

Activities and Impacts
- Performance improvement of dataflow version (executing over PaRSEC) in comparison to original code for CCSD.
- The modified code yields 2x higher performance and keeps scaling until all 16 cores of all 64 nodes have been utilized in contrast with original code.

MPAS-Ocean Performance Data

Kevin Hsu, (SUPER), Hank Childs (SDSC), Allen Malony (SUPER)
University of Oregon

Background
- MPAS-Ocean core uses Voronoi tessellation based unstructured grids.
- It has the benefits of providing multi-resolution and quasi-uniform grid properties at the same time to facilitate better simulations.
- Structured grids have a negative impact on performance due to factors such as non-obvious domain decomposition, parallel load imbalance, unbalanced load and irregular memory access patterns.
- MPAS-Ocean utilizes deep halo regions on the grid. These magnify the load imbalance factor significantly.
- MPAS-Ocean performance was analyzed on DOE supercomputer, Edison, a Cray XC30 at NERSC.

Objective
- Developed a weighted halo-aware grid partitioning scheme based on iterative refinement of the partitions using halo information. Using hence generated grid partitioning resulted in improved scaling at high concurrencies.

Analysis and Visualization of MPAS-Ocean Performance Data

Kevin Hsu, (SUPER), Hank Childs (SDSC), Allen Malony (SUPER)
University of Oregon

Background
- SUPER and SDSC collaboration.
- Objective was to Map TAU performance measurements to the MPAS-Ocean spatial domain to assist in optimization of partition strategies

Activities and Impacts
- Demonstrated that the load imbalance problem is correlated with variability among partition block size due to relatively large halo regions
- Visualizations also show that vertical depth, coastlines and number of neighbors affect performance, communication times

Awards of computer time provided by the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.