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» Nuclear density functional theory (DFT) is needed to compute properties of
atomic nuclei for basic science and applications.

» Energy density functionals (EDF) depend on a handful of model parameters
that must be fitted on experimental data.

» We built the first optimization and uncertainty quantification (UQ)
framework to determine EDF model parameters, and quantify and
propagate the resulting statistical uncertainties.
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» Detailed knowledge of nuclear properties is needed both for basic science
and applications:
» Elements in the universe are formed in complex nuclear reactions networks in stellar
environments;
» Current experiments on the nature of the neutrino depends very sensitively on a handful
of nuclear matrix elements that must be computed very precisely;
» Nuclear fission powers nuclear reactors and determines the limit of nuclear stability.
» The Facility for Radioactive lon Beam (FRIB} is DOE’s largest investement
and will provide experimental data in very exotic, neutron-rich nuclei;
» Many atomic nuclei of critical importance to superheavy physics, nuclear
astrophysics, or fission will nevertheless remain out of reach: a predictive
theory is essential.

Nuclear Density Functional Theory

» Density functional theory is a general approach for solving quantum
many-body problems such as nuclei, atoms, or molecules.
» In nuclear physics, its main input is the nuclear energy density functional:
» The nuclear EDF effectively maps out nuclear forces into a functional of the density of
particles (neutrons and protons);
» The EDF depends on a handful of coupling constants (= model parameters) that must
be fitted on experimental data (= calibration).

» Given the EDF, nuclear DFT solvers determine the actual density of particles
by solving a non-linear system of coupled integro-differential integrations.

» Solving the DFT equations take between a few minutes up to a few days on
a node; large-scale applications such as surveys of nuclear properties or
fission require hundredof thousands to millions of such calculations.

Optimization

» Our calibration of the nuclear EDF uses different types of data across the
nuclear chart [1-3].

» Calculations are performed with the derivative-free POUNDERS algorithm
using the fast DFT solver HFBTHO on leadership computing facilities [1].
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» We perform a full sensitivity analysis of the solution to highlight correlations
among parameters and the importance of data types in determining
parameters [1-3].

» We show that current forms of nuclear energy functionals are not predictive
enough [3].
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Uncertainty Quantification

» We compute the full Bayesian
posterior distribution of the
UNEDF1 nuclear EDF by Markov
Chain Monte Carlo sampling [4].

» To mitigate the prohibitive cost of
MCMC simulations, we build a
response function of our x2
function using Gaussian processes
[4,5].

» 200 full DFT calculations are used

to train the GP model.
» Uncertainties extracted from the posterior distribution are compatible with

those from the covariance analysis [6].
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» We draw random samples from the posterior distribution to propagate
stastistical uncertainties to predictions of masses of neutron-rich nuclei and
the limits of stability (neutron drip line).

» We find that recent mass measurements of neutron-rich nuclei at the Caribu
facility (ANL) do not provide enough information to reduce current (large)
uncertainties [7].

Conclusions

» Our new optimization and UQ framework will provide reliable theory
guidance for DOE and NSF experimental programs and helps identify
limitations in predictive power of models.

» POUNDERS (optimization} and GPMSA (UQ) codes were developed during
successive SciDAC collaborations and have transformed how nuclear DFT is
implemented.
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