
Algorithms 
•  Use Randomized Butterfly Transformation as preprocessing to avoid 

expensive pivoting in sparse LU or LDLT. 
•  RBT is easily scalable, as opposed to numerical pivoting. 
•  RBT:  A1 = UTAV, where U and V are recursive butterfly matrices.  
     A1 is guaranteed to be factorizable without pivoting. 

 

 
 
 
 
Results: 
•  The increase of A1’s factor size is modest for many matrices. 

§  Tested 90 sparse matrices, compared to SuperLU (GE with partial 
pivoting): 37 have smaller factor size, 30 have increase <= 2x, 23 have 
increase > 2x.   69 have <= 2 digits loss of solution accuracy. 

•  Parallel transformation (d = 1),  
•  nlpkkt120: a matrix of dimension 3.5 M, 95 M nonzeros 
•  1 second @ 4 cores, 0.4 seconds @ 32 cores 

•  In the process of scalability study in SuperLU_DIST. 
 
References 
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Sparse Direct Solvers and Preconditioners on Manycore Systems 

We	
  develop	
  scalable	
  sparse	
  direct	
  linear	
  solvers	
  and	
  effec2ve	
  precondi2oners	
  for	
  the	
  most	
  challenging	
  linear	
  systems	
  on	
  manycore	
  parallel	
  machines.	
  Our	
  focal	
  efforts	
  
are	
  the	
  developments	
  of	
  two	
  types	
  of	
  solvers:	
  The	
  first	
  is	
  a	
  pure	
  direct	
  solver,	
  encapsulated	
  in	
  SuperLU	
  soCware.	
  The	
  second	
  is	
  the	
  nearly-­‐op2mal	
  precondi2oners	
  using	
  
the	
  HSS	
  low-­‐rank	
  approximate	
  factoriza2on	
  of	
  the	
  dense	
  submatrices,	
  encapsulated	
  in	
  STRUMPACK	
  soCware.	
  

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130 
       

.	
  

SuperLU_DIST Performance on Intel Phi 

Sherry Li, Pieter Ghysels, Francois-Henry Rouet (Lawrence Berkeley National Laboratory), Piyush Sao, Richard  Vuduc (Georgia Tech) 
 

Direct Solver SuperLU: Multicore / GPU-aware 

Challenges 
•  Strong task/data dependencies given by DAG 
•  Irregular data access, scatter/gather 
•  Low Arithmetic Intensity in the beginning, higher AI later 

Strategies on CPU + GPU 
•  CPU multithreading Scatter/Gather, GPU does data-parallel BLAS only. 
•  Overlap CPU & GPU activities to hide PCI transfer. 
•  Results: 100 nodes GPU clusters, 2.7x faster,  2-5x memory saving 
•  Programming: MPI + OpenMP + CUDA 

 
 
 
 
 
 
 
 
 
 
Strategies on Intel Xeon Phi (MIC): offload mode 
•  Offload both GEMM and Gather/Scatter on MIC, take advantage of more 

powerful cores than GPU, higher memory BW on MIC. 
•  HALO algorithm – Highly Asynchronous Lazy Offload 

•  Two partial sums of Schur-complement are maintained on CPU, MIC. 
•  Reduce the to-be-factorized panel on CPU, absorbing MIC’s panel. 
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①  Aggregate small blocks  

②  GEMM of large blocks 

③  Scatter  

GPU acceleration:  

Software pipelining to 
overlap GPU execution 
with CPU Scatter, data 
transfer.   

RBT to Avoid Numerical Pivoting 
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1
2

R0 R1

R0 −R1

#

$
%
%

&

'
(
(
, R0  and R1  random diagonal n

2
×
n
2

 matrices,

Recursive Butterfly matrix is a product of butterfly matrices, n = 2d :
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⋅W <n,d−1>,  with W <n,1> = B<n>

•  1-node Sandy Bridge-EP: 2 sockets / 16 cores / 32 threads, 2 MICs 
•  CPU only: OMP(p), MPI(p)+OMP(q) 
•  Added MIC:  OMP(p)+MIC (1),  MPI(p)+OMP(q)+MIC(2) 

•  Results:  
•  2nd MIC gives additional 1.8x speedup. 
•  2.5x faster than CPU-only with OpenMP. 

•  Bottleneck: panel factorization. 
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Parallel HSS Low Rank Factorization 

STRUMPACK Software (STRUctured Matrices PACKage) 
•  http://portal.nersc.gov/project/sparse/strumpack/ 

•  Dense: distributed using MP;  Sparse: shared-memory using OpenMP 
Hierarchically semiseparable low-rank matrices 
•  As direct solvers for PDEs with smooth kernels, BEMs, integral equations, 

or preconditioners for general problems. 
•  Nested bases allows to achieve asymptotically lower complexity in both 

FLOPS and communication. 
 
 
 
 
 
 
 
New parallel algorithms 
•  Randomized sampling in place of traditional RRQR for compression, 

simplifies extend-end in sparse MF, further reduces flops. 
•  Shared-memory: use OpenMP task pragma to schedule tree-based irregular 

parallelism. 
•  Distributed-memory:  use MPI, BLACS, and PBLAS;  arrange processes in a 

tree structure with nested subgroups; use proportional mapping of e-tree 
and HSS tree nodes to balance workload. 

•  Results:  
•  1024 cores, RS-based HSS construction 6x faster than RRQR based. 
•  Sparse RS-HSS-MF up to 7x faster than MF for model PDEs. 
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Sparse RS-HSS: extend-add of sample matrices 

Dense HSS 

Frontal matrix Extend-add 
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10 general sparse matrices, 3 solvers, 12-core Intel Ivy Bridge 


