
Algorithms
•  Use Randomized Butterfly Transformation as preprocessing to avoid

expensive pivoting in sparse LU or LDLT.
•  RBT is easily scalable, as opposed to numerical pivoting.
•  RBT: A1 = UTAV, where U and V are recursive butterfly matrices.
 A1 is guaranteed to be factorizable without pivoting.

Results:
•  The increase of A1’s factor size is modest for many matrices.

§  Tested 90 sparse matrices, compared to SuperLU (GE with partial
pivoting): 37 have smaller factor size, 30 have increase <= 2x, 23 have
increase > 2x. 69 have <= 2 digits loss of solution accuracy.

•  Parallel transformation (d = 1),
•  nlpkkt120: a matrix of dimension 3.5 M, 95 M nonzeros
•  1 second @ 4 cores, 0.4 seconds @ 32 cores

•  In the process of scalability study in SuperLU_DIST.

References
•  M. Baboulin, X.S. Li and F.-H. Rouet, “Using Random Butterfly Transformations to avoid

pivoting in sparse direct methods”, VECPAR 2014 Conference, June 30 – July 3, 2014.

Sparse Direct Solvers and Preconditioners on Manycore Systems

We	
 develop	
 scalable	
 sparse	
 direct	
 linear	
 solvers	
 and	
 effec2ve	
 precondi2oners	
 for	
 the	
 most	
 challenging	
 linear	
 systems	
 on	
 manycore	
 parallel	
 machines.	
 Our	
 focal	
 efforts	

are	
 the	
 developments	
 of	
 two	
 types	
 of	
 solvers:	
 The	
 first	
 is	
 a	
 pure	
 direct	
 solver,	
 encapsulated	
 in	
 SuperLU	
 soCware.	
 The	
 second	
 is	
 the	
 nearly-­‐op2mal	
 precondi2oners	
 using	

the	
 HSS	
 low-­‐rank	
 approximate	
 factoriza2on	
 of	
 the	
 dense	
 submatrices,	
 encapsulated	
 in	
 STRUMPACK	
 soCware.	

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130

.	

SuperLU_DIST Performance on Intel Phi

Sherry Li, Pieter Ghysels, Francois-Henry Rouet (Lawrence Berkeley National Laboratory), Piyush Sao, Richard Vuduc (Georgia Tech)

Direct Solver SuperLU: Multicore / GPU-aware

Challenges
•  Strong task/data dependencies given by DAG
•  Irregular data access, scatter/gather
•  Low Arithmetic Intensity in the beginning, higher AI later

Strategies on CPU + GPU
•  CPU multithreading Scatter/Gather, GPU does data-parallel BLAS only.
•  Overlap CPU & GPU activities to hide PCI transfer.
•  Results: 100 nodes GPU clusters, 2.7x faster, 2-5x memory saving
•  Programming: MPI + OpenMP + CUDA

Strategies on Intel Xeon Phi (MIC): offload mode
•  Offload both GEMM and Gather/Scatter on MIC, take advantage of more

powerful cores than GPU, higher memory BW on MIC.
•  HALO algorithm – Highly Asynchronous Lazy Offload

•  Two partial sums of Schur-complement are maintained on CPU, MIC.
•  Reduce the to-be-factorized panel on CPU, absorbing MIC’s panel.

References
•  P. Sao, R. Vuduc, and X.S. Li, “A distributed CPU-GPU sparse direct solver”, Proc. of Euro-Par

2014 Parallel Processing, August 25-29, Porto, Portugal.
•  P. Sao, X. Liu, R. Vuduc, and X.S. Li, “A Sparse Direct Solver for Distributed Memory Xeon Phi-

accelerated Systems”, IPDPS 2015, May 25-29, 2015, Hyderabad, India.

�

�

�
� � ��

①  Aggregate small blocks

②  GEMM of large blocks

③  Scatter

GPU acceleration:

Software pipelining to
overlap GPU execution
with CPU Scatter, data
transfer.

RBT to Avoid Numerical Pivoting

Butterfly matrix of size n×n: B<n> =
1
2

R0 R1

R0 −R1

#

$
%
%

&

'
(
(
, R0 and R1 random diagonal n

2
×
n
2

 matrices,

Recursive Butterfly matrix is a product of butterfly matrices, n = 2d :

W <n,d> =

B1
<n/2d−1>

!

B
2d−1
<n/2d−1>

#

$

%
%
%
%

&

'

(
(
(
(

⋅W <n,d−1>, with W <n,1> = B<n>

•  1-node Sandy Bridge-EP: 2 sockets / 16 cores / 32 threads, 2 MICs
•  CPU only: OMP(p), MPI(p)+OMP(q)
•  Added MIC: OMP(p)+MIC (1), MPI(p)+OMP(q)+MIC(2)

•  Results:
•  2nd MIC gives additional 1.8x speedup.
•  2.5x faster than CPU-only with OpenMP.

•  Bottleneck: panel factorization.

n ns

A

n nsk

A

A(
:,k

+1
)

L(
k)

L(
k)

A
(:,

k+
1)

A(k+1,:) A (k+1,:)
U(k) U (k)

Send A Panels(k+2)

Ti
m

el
in

e

Reduce(k)

Panel Fact.(k)

Schur-Comp.
 update(k)

CPU MIC

... ...

Reduce(k+1)

Panel Fact.(k+1)

Schur-Comp.
 update(k+1)

k+2

Reduce(k+2)

Panel Fact.(k+2)

Receive LU Panels(k)

Send A Panels(k+1)

Receive LU Panels(k+1)

Receive LU Panels(k+2)

Send A Panels(k+3)
Schur-Comp.
 update(k+2)

Schur-Comp.
 update(k)

Schur-Comp.
 update(k+1)

Schur-Comp.
 update(k+2)

PCIe

nlpkkt80

20 21 22 23 24 25 26 2721

22

23

24

25

26

27

28

Number of MPI processes

Ti
m

e
in

 s
ec

on
ds

t
pf
�MPI(p)+OMP(q)

t
pf
�MPI(p)+OMP(q)+MIC

t
sch
�MPI(p)+OMP(q)

t
sch
�MPI(p)+OMP(q)+MIC

Parallel HSS Low Rank Factorization

STRUMPACK Software (STRUctured Matrices PACKage)
•  http://portal.nersc.gov/project/sparse/strumpack/

•  Dense: distributed using MP; Sparse: shared-memory using OpenMP
Hierarchically semiseparable low-rank matrices
•  As direct solvers for PDEs with smooth kernels, BEMs, integral equations,

or preconditioners for general problems.
•  Nested bases allows to achieve asymptotically lower complexity in both

FLOPS and communication.

New parallel algorithms
•  Randomized sampling in place of traditional RRQR for compression,

simplifies extend-end in sparse MF, further reduces flops.
•  Shared-memory: use OpenMP task pragma to schedule tree-based irregular

parallelism.
•  Distributed-memory: use MPI, BLACS, and PBLAS; arrange processes in a

tree structure with nested subgroups; use proportional mapping of e-tree
and HSS tree nodes to balance workload.

•  Results:
•  1024 cores, RS-based HSS construction 6x faster than RRQR based.
•  Sparse RS-HSS-MF up to 7x faster than MF for model PDEs.

References
•  F.-H. Rouet, Xiaoye S. Li, P. Ghysels. A distributed-memory package for dense hierarchically

semi-separable matrix computations using randomization. Submitted to ACM Transactions
on Mathematical Software, 2014.

•  P. Ghysels, X.S. Li, F.-H. Rouet, S. Williams, A. Napov An efficient multi-core implementation
of a novel HSS-structured multifrontal solver using randomized sampling. Submitted to
SIAM SISC Special Issue CSE 2015, 2015.

A≈

D1 U1B1V2
T

U2B2V1
T D2

"

#

$
$
$

%

&

'
'
'

U3B3V6
T

U6B6V3
T D4 U4B4V5

T

U5B5V4
T D5

"

#

$
$
$

%

&

'
'
'

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36 T

F21

F12F11

F22

Sparse RS-HSS: extend-add of sample matrices

Dense HSS

Frontal matrix Extend-add

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

PA
R

D
IS

O

M
F

M
F+

H
SS

no
rm

al
iz

ed
 ti

m
e

(M
F=

1)

ou
t o

f m
em

or
y

reorder time
factor time
solve time

spe10-anisoSerenaA22Transporttorso3tdr190knlpkkt80Geo 1438atmosmodd

10 general sparse matrices, 3 solvers, 12-core Intel Ivy Bridge

