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SUPER Researchers Develop
State-of-the-Art Performance Tools
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Workload|(FP¥, CF1, REV, SY1)
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Performance |Focuses on execution time
Measurement
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specific)
State-of-the-art
Technology

erformance Tool Integration
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Riskiness|Proven Technology
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LINL
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tuning and ORIO transformation
empirical
analysis and code
system tuning system generation
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Oregon UTAH/USC

PAPI
performance

‘Active Harmony
online and offline
autotuning
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®Key: Edge (A->B) implies Tool B uses information from Tool A.
®Tools track architectural changes and support application requirements.

® State-of-the-art tools are applied to SciDAC
applications.

® Application development informed by results
derived by SUPER tools.

® Tool development informed by application
requirements.
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MFDn Application (N

*Many Fermion Dynamics: Nuclear (MFDn)

is used to calculate the properties of light
atomic nuclei.

*Nominally, this requires an eigensolver
like Lanczos which requires applying the 1
operator repeatedly. |

*MFDn forms the very large (half a billion
nonzeros per process) symmetric \
configuration interaction matrix explicitly. |

*Repeated application of the operator is bandwidth-intensive.
*Symmetry further complicates this as it necessitates high performance SpMV
and SpMV_T (transpose)

LOBPCG and CSB Representation (2014)

*LOBPCG is a block eigensolver that restructures computation into a series of
Sparse Matrix-Dense Matrix Multiplications (SpMM) where the dense matrix is
tall and skinny (500,000 x 16 per process).

*Once again, symmetric necessitates Sp)MM_T (transpose)

*SpMM reuses matrix, reduces memory bandwidth requirements.

*SUPER collaborated with FastMath to model, analyze, and optimize these
operations.

*Optimization Strategy employs Compressed Sparse Block (CSB) matrix
representation.

H. M. Aktulga, A. Buluc, S. Williams, C. Yang, "Optimizing Sparse Matrix-Multiple Vector Multiplication for
Nuclear Confi ion Interaction C i 'y i Parallel and Distril Processing it
(IPDPS 2014), May 2014

Automation in CHiLL (2015)

*GOAL: Extend CHiLL compiler to perform domain-specific transformations to
both sparse matrix representation and associated code.
Inspector/Executor: Inspector identifies indices of nonzeros and (optionally)
derives new matrix representation.

*Incorporates 3 new transformations into CHiLL: make-dense, compact,

compact-and-pad
Tnspector Code:
Matrix Format
Similar to library.

Approach

CHi
Source-to-source
Transformations

Polyhedral (Compile-time)
Transformations
Static/Affine
CHILL Transformations | Executor Code:
m | Iterate using New
Recipe Representation
P .
feun-time) i oma
Transformations

Apply to NUCLEI Computation (Work in Progress)
*CHiLL inspector automates conversion to CSB 0c0
sparse matrix representation

*CHiLL transformations derive optimized SpMV
executor for CSB representation (SpMV_T
analogous)

*Next step: generate SpMM executor

Execution Time (seconds)
8 threads on Intel Haswell
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A. Venkat, M. Hall, M. Strout, "Loop and Data Transformations for Sparse Matrix Codes", Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2015), June 2015
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* Evolutionary algorithms favor exploration.
* Attempt to approximate the performance “landscape.”

* The ANGEL search algorithm favors exploitation.
« Attempts to move toward the goal with each evaluation.
* Mitigates the overhead of evaluating a bad configuration.
* Meets the demands of online autotuning.

* Priority and leeway specify the goal.

« “Allow a 30% drop in my primary

objective in order to improve my
secondary objective.”

enalty Function E

* ANGEL penalty function considers multiple objectives.
* Penalty in proportion to leeway violations of higher objectives.
* Prevents “needle-in-a-haystack” search surfaces.
* Penalty effectively combines search surfaces.

Secondary Objective
(After Penalization)

Primary Objective

Non-penalized [i§
Region

ANGEL: Comparison with Testsuite

* ANGEL almost always performs better than others.
* When others are better, ANGEL results are close to best.

Converged Distance from Goal (Normalized - Lower is Better)
-

Search Overhead (Scalarized and Normalized ~ Lower is Better)

LULESH2 Kernel Time/Energy Results

* ANGEL selects solutions close to, but not violating the leeway.
* As a larger leeway is given, more energy is saved.
* ANGEL often finds the optimal performance.
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* When it does not, ANGEL remains close to the goal.
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