SUPER

INSTITUTE FOR SUSTAINED PERFORMANCE,
ENERG! ) RESILIENCE

SUPER Researchers Develop
State-of-the-Art Performance Tools

Commercial Tools SUPER Tools

Scientific simulation
(FP4, CF¥, RE4, SYV)

Performance, primarily

Target|General-purpose workloads
Workload|(FP¥, CF1, REV, SY1)

Driver |Programmer productivity,
primarily

Performance |Focuses on execution time
Measurement

Extensive, pinpoints
opportunities for
improvement
Aggressive (dynamic,
autotuning, architecture
specific)
State-of-the-art
Technology

erformance Tool Integration

PBOUND
performance
modeling

from code
ANL

Optimization|Conservative (static,
architecture independent)

Riskiness|Proven Technology

ROSE
compiler
infrastructure

LINL

TAU CHILL

tuning and ORIO transformation
empirical
analysis and code
system tuning system generation

ANL/Oregon

Oregon UTAH/USC

PAPI
performance

‘Active Harmony
online and offline
autotuning

UMD

®Key: Edge (A->B) implies Tool B uses information from Tool A.
®Tools track architectural changes and support application requirements.

® State-of-the-art tools are applied to SciDAC
applications.

® Application development informed by results
derived by SUPER tools.

® Tool development informed by application
requirements.

SUPER Performance Autotuning

Khalid Ahmad, Mary Hall, Anand Venkat
University of Utah

Samuel Williams
Lawrence Berkeley National Laboratory

MFDn Application (N

*Many Fermion Dynamics: Nuclear (MFDn)

is used to calculate the properties of light
atomic nuclei.

*Nominally, this requires an eigensolver
like Lanczos which requires applying the 1
operator repeatedly. |

*MFDn forms the very large (half a billion
nonzeros per process) symmetric \
configuration interaction matrix explicitly. |

*Repeated application of the operator is bandwidth-intensive.
*Symmetry further complicates this as it necessitates high performance SpMV
and SpMV_T (transpose)

LOBPCG and CSB Representation (2014)

*LOBPCG is a block eigensolver that restructures computation into a series of
Sparse Matrix-Dense Matrix Multiplications (SpMM) where the dense matrix is
tall and skinny (500,000 x 16 per process).

*Once again, symmetric necessitates Sp)MM_T (transpose)

*SpMM reuses matrix, reduces memory bandwidth requirements.

*SUPER collaborated with FastMath to model, analyze, and optimize these
operations.

*Optimization Strategy employs Compressed Sparse Block (CSB) matrix
representation.

H. M. Aktulga, A. Buluc, S. Williams, C. Yang, "Optimizing Sparse Matrix-Multiple Vector Multiplication for
Nuclear Confi ion Interaction C i 'y i Parallel and Distril Processing it
(IPDPS 2014), May 2014

Automation in CHiLL (2015)

*GOAL: Extend CHiLL compiler to perform domain-specific transformations to
both sparse matrix representation and associated code.
Inspector/Executor: Inspector identifies indices of nonzeros and (optionally)
derives new matrix representation.

*Incorporates 3 new transformations into CHiLL: make-dense, compact,

compact-and-pad
Tnspector Code:
Matrix Format
Similar to library.

Approach

CHi
Source-to-source
Transformations

Polyhedral (Compile-time)
Transformations
Static/Affine
CHILL Transformations | Executor Code:
m | Iterate using New
Recipe Representation
P .
feun-time) i oma
Transformations

Apply to NUCLEI Computation (Work in Progress)
*CHiLL inspector automates conversion to CSB 0c0
sparse matrix representation

*CHiLL transformations derive optimized SpMV
executor for CSB representation (SpMV_T
analogous)

*Next step: generate SpMM executor

Execution Time (seconds)
8 threads on Intel Haswell

4096 8192

Block Size (doubles)

A. Venkat, M. Hall, M. Strout, "Loop and Data Transformations for Sparse Matrix Codes", Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2015), June 2015

16184

U.S. DEPARTMENT OF

Office of

ENERGY Science

Ray Chen, Jeffrey Hollingsworth
University of Maryland

* Evolutionary algorithms favor exploration.
* Attempt to approximate the performance “landscape.”

* The ANGEL search algorithm favors exploitation.
« Attempts to move toward the goal with each evaluation.
* Mitigates the overhead of evaluating a bad configuration.
* Meets the demands of online autotuning.

* Priority and leeway specify the goal.

« “Allow a 30% drop in my primary

objective in order to improve my
secondary objective.”

enalty Function E

* ANGEL penalty function considers multiple objectives.
* Penalty in proportion to leeway violations of higher objectives.
* Prevents “needle-in-a-haystack” search surfaces.
* Penalty effectively combines search surfaces.

Secondary Objective
(After Penalization)

Primary Objective

Non-penalized [i§
Region

ANGEL: Comparison with Testsuite

* ANGEL almost always performs better than others.
* When others are better, ANGEL results are close to best.

Converged Distance from Goal (Normalized - Lower is Better)
-

Search Overhead (Scalarized and Normalized ~ Lower is Better)

LULESH2 Kernel Time/Energy Results

* ANGEL selects solutions close to, but not violating the leeway.
* As a larger leeway is given, more energy is saved.
* ANGEL often finds the optimal performance.

1% Leeway

L L L ' n
B a1 s 13 W0 e o o1 6 138 w0 1w

0.1% Leeway

16
14
n2
10
108
106

16
14
n2
§ 10
& #4 s
4 s

e
|
|
+
p—

Eneray (k)

Wallime (s)

* When it does not, ANGEL remains close to the goal.

3% Leeway 6% Leeway

ns |

Waltime (5)

Eneray (k)
Eneroy (k)

B a1 1w 13 W0 e 1m0 o 1M 136 138 w0 e

Wallime (s) Waltime (5)

Support for this work was provided through the Scientific Discovery

through Advanced Computing (SciDAC) program funded by the U.S.
Department of Energy Office of Advanced Scientific Computing Research




