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OBJECTIVES & CHALLENGES

Polynomial Chaos Representations (PCE) are a key tool at the intersection of UQ and CSE. Computing PCE representations, while
often computer intensive, yields representations of stochastic processes and random variables that are accurate representations of a
functional dependence between random variables as well as carry a convergent approximation of target probability measure.

Traditional probabilistic updating scheme, including Bayesian methods, only require the probabilistic content of these approximation
to form the prior and likelihood functions. The functional dependence between input and output, while already computed at great
expense, is not leveraged.

Capitalizing on the PCE construction, updating can be construed as a constrained optimization problem in a Hilbert space already
described and constructed as part of the PCE formalism. We demonstrate this projective updating for PCE representations of both
output predictions and model parameters.

BAYES AND PCE UPDATES

BAYESIAN UPDATE PCE UPDATE

UPDATING POLYNOMIAL CHAOS REPRESENTATIONS

GENERIC CONDITIONING PCE CONDITIONING

BAYESIAN UPDATE OF PCE PROJECTION UPDATE OF PCE

CONSTRAINED PROJECTION

PRIOR MODEL:

Y =
n∑

i=0

Yiψi(ξ) ∈ Pn(H)

CONSTRAINT:
CA = {Y : Y ∈ A a.s.}

POSTERIOR MODEL:

Y post =
n∑

i=0

Y
post
i ψi(ξ) ∈ Pn(H)

DYKSTRA’S ALGORITHM

DYKSTRA’S ALGORITHM:

lim
k→∞

‖Y k − ProjPn(H)∩CA
(Y )‖ = 0

INITIALIZE:
Z0 = Y

PROJECT ON CA:

Xk+1 = ProjCA
(Zk)

PROJECT ON Pn(H):

Y k+1 = ProjPn(H)(X
k+1)

CORRECTOR:

Zk+1 = Zk − (Xk+1 − Y k+1)

CONSTRAINED PROJECTION

PROJECT FROM PCE SET TO
CONSTRAINT SET:

DYKSTRA’S ALGORITHM

DYKSTRA FOR PCE

INITIALIZE:

Z0 =

p∑
i=0

y0iψi(ξ)

PROJECT ON CA:

Xk+1 =
m∑
i=0

xk+1
i ψi(ξ) = ProjCA

(
m∑
i=0

zki ψi(ξ)

)

xk+1
i =

∫

Ω

ProjCA

(
m∑
j=0

zkjψj(ξ)

)
ψi(ξ)dξ , i = 0, · · · ,m

PROJECT ON Pn(H):

Y k+1 = ProjPn(H)(X
k+1) =

n∑
i=0

xk+1
i ψi(ξ)

CORRECTOR:

Zk+1 =
m∑
i=0

zki ψi(ξ)−
m∑

i=n+1

xk+1
i ψi(ξ) =

{
zki if i ≤ n

zki − xk+1
i if i > n

EXAMPLES
1D GAUSSIAN PRIOR WITH POSITIVE CONSTRAINTS:

Bayesian Update Projected Update

2D GAUSSIAN PRIOR WITH ELLIPSOIDAL CONSTRAINTS:

Gaussian Prior Bayesian Update Projected Update

2D ANISOTROPIC GAUSSIAN PRIOR WITH POSITIVE CONSTRAINTS:

Gaussian Prior Bayesian Update Projected Update

UPDATE OF MODEL PARAMETERS

Consider a beam with random elastic coefficients. The maximum
deflection at the center will be a random variable. We adopt a
simple Euler-Bernoulli model for the beam, which only account
for flexural effects. We assume a prior probabilistic model for
elasticity modulus, and propagate that into a PCE model for the
deflection of the beam.

The real beam is more complex. We know its center deflection is
bounded between two experimental values. We update the prior
probabilistic models with information.

We update both:

• predicted stochastic model of the deflection.

• prior stochastic model of elasticity parameter.

• PRIOR PROBABILISTIC MODEL:

E =

(
1− δ√

2

)
Ē +

δĒ√
2
ξ2 ,

{
ξ ∼ N (0, 1)
δ = σE/Ē

• CONSTRAINT:
BOUNDS ON MAXIMUM DEFLECTION AT
CENTERPOINT.

UPDATE PCE OF PREDICTION UPDATE PCE OF PARAMETER

UPDATE DEFLECTION REPRESENTATION UPDATE MODULUS REPRESENTATION

UPDATED PHYSICS MODEL
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