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Improved PMI Models in SOLPS (ORNL, LANL) || ("In order to address key scientific PMI issues, an) | PIC Plasma Sheath and Fractal TRIDYN (UIUC)

Two improvements to the PMI models within SOLPS have been Integrated Edge-PMI approach is requwed _ 1. lon Energy-Angle Distribution in Magnetized Plasma Sheath
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« UIUC full-f 6D sheath PIC code used to analyze
the near-wall ion kinetics
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