
Predicting a new phase

Computational tools are critical to understanding materials.

A new wave-function
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Wave-functions for improved  simulations of 
strongly correlated systems

Size consistency

Many of those tools depend on a wave-function as input.
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expand in short-range pair product terms

go to higher order (three-body) terms for further accuracy

For Bosonic systems we find a new type of wave-function which improves upon 
the current state of the art.
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We’ve developed a new class of two-parameter wave-functions which 
accurately describes both landau symmetry breaking phases and topological 
phases.  This puts two very different classes of phases in one framework

* not possible to empty condensate fraction in a Mott Insulator

How do we know? Use variational Monte Carlo to compute many properties.
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Perfect Insulators

The energy of two identical systems 
is twice the energy of one system.

Non-interacting systems, such as 
Hartree-Fock are size-consistent.

Hard to write down interacting 
wave-functions which are size-
consistent.

The parton wave-functions we write 
down are size-consistent.

Why?

det( )=det( )det( )

Use variational Monte Carlo to determine energetics.
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Critical exponents

Most materials which are insulators, nonetheless have conductivity at 
finite temperature.  Systems that are in the many-body localized (MBL) 
phases are different - they have exactly zero conductivity even at infinite 
temperature. These “materials” allow quantum mechanical phenomena 
to exist at high temperatures and may be useful for a variety of 
technological applications. They are the interacting analogue of 
Anderson Insulators.  Here we try to numerically simulate and 
understand the structure of these perfect insulating materials.
Phenomenology
• No conductivity

• No thermalization - statistical mechanics breaks down
• Emergent conserved equations of motion

• No level repulsion of eigenstates
• Eigenstates obey area law

The whole spectrum

UHU † = HD
U diagonalizes the spectrum.
We find a compact representation of U.

The MPO Language

Notice U takes a product state and returns an eigenstate.

operatorproduct 
state

=

eigenstate

The operator is representable by 2n pairs of matrices:

Each eigenstates is represented by n of those matrices.

{A1,A2,...,An} and {B1, B2,...,Bn}

eigenstate 1: {A1,B2,A3,A4,B5,....}
eigenstate 2: {B1,A2,B3,B4,B5,....}

Key question:  Are the matrices compact in the MBL?

Important technical point:  need to choose a way to match product states to 
eigenstates locally.

Work with David PekkerWork with Hassan Shapourian

When this is done, matrices are compact!
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