Pushing the Envelope of Fusion Edge Physics on Extreme Scale HPCs
S. Ku1, S. Parker2, C.S. Chang1, R. Hager1, J. Lang1, and the EPSI Team

PPPL1, U. Colorado Boulder2

Institutional Leaders

OFES
U. Colorado: S. Parker

OSACR
Lehigh U.: A. Kritz

OAR
ORNL: Scott Kladky (SDAV)

NRC
P. Worley, E. D’Azevedo (SUPER)

NIE
RPI: Mark Shephard (FASTMath)

NSF
Rutgers U.: M. Parashar (SDAV)

UCSD: George Tyran

QUEST
U. Texas: Bob Moser

SDAV: C. S. Chang (OFES and OASCR)

SDAV funded Visualization member: K. Ha, UC Davis (SDAV)

"Toroidal" Tokamak Geometry

ITER Poloidal cross-section

Torus, not a straight cylinder: physics becomes more complicated through the magnetic inhomogeneity and the toroidal mode coupling.

What science are we studying?

Edge plasma self-organizes into a steep pedestal shape (H-mode)
- Smaller and cheaper tokamak, by allowing a hot plasma at plasma edge
- Challenging physics: Scale inoperable plasma, turbulence and neutral particle dynamics across steep gradient, and in contact with material wall
- Non-equilibrium thermodynamics, hence non-Maxwellian
- "Fluid closure" is difficult
- Large amplitude nonlinear coherent turbulence structures, "blobs."

XGC1, with its excellent portability, could take advantage of all the LCFs tested so far

- A result from close collaboration between ASCR and OFES Scientists.

XGC1 Performance: Weak Particle Scaling on O2 grid

Computing Resources for XGC in 2015

- INCITE: 270M hours
 - Titan: 170M hours (Extreme scale jobs with full physics, 10-20PFs, usually 90% capability computing)
 - Mira: 100M hours (Large scale jobs with partial physics at 3.3 PFs, \approx 1.3 capability computing)
- NERSC: 70M hours (capacity computing on Edison, \approx 1.5PFs)

Pre-Exascale Program

- CAAR at OLCF: postdoc support
- NERSC at NERSC. Tier 1, postdoc support

Predictions for DIII-D & NSTX are in the right ballpark

- DIII-D: 90M hours
- NSTX: 70M hours

Cross-validation of E&M modes between XGC1 and GEM

ITG-KBM Transition Verification

6D particle dynamics for validating 5D gyrokinetic equations (U. Colorado)

Kinetic-Kinetic Multiscale Integration

Kinetic-electrons

Kinetically-electrons

Kinetically-ion-electrons

Kinetically-ion-ion

Holding the correct multi-scale dynamics is very important in the multi-scale code coupling

Further development of XGC1, with SciDAC Institutes and HPC Centers

Physics capability

- Electromagnetic turbulence
- Edge electrons can be more than fluid: Gyratonic ions + fluid electrons.
- This choice removes the "cancellation issue" in the kinetic ion & E&M
- kinetic electrons physics can be added later in the form of closures.
- Utilize the good work by GEM (delta-E, core plasma) for technology transfer to XGC1, including the 4D-verification work.

Kinetico-electric multi-scale integration

- Pre-exascale programs (in CAAR and NERSC)
- Vectorization
 - Guida Formanik: OpenACC for easier portability
 - Heterogeneous management
- Multiple GPUs in a node
- Fault tolerance
- Implict and variational time stepping

Correct transport in coarse-grained XGC1

Correct transport in coarse-grained XGC1

Computational capability

- Flexible data formats: RDB, XML, HDF5
- Data analysis: on the fly analysis
- Data sharing: post processing
- Data analysis: on the fly analysis
- Data sharing: post processing
- Data analysis: on the fly analysis
- Data sharing: post processing