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Towards a Bayesian analysis of impurity transport data (MIT) for XGC validation 

Uncertainty	
  Quan5fica5on	
   Data Management 

 Bayesian Analysis: 
•   Cubic spline basis functions. 
•   Adaptive Parallel Tempering(APT) to handle multiple maxima, 

width of posterior distribution. 
•   Uncertainty estimate in r/a > 0.6 still too small to be consistent 

with assumed lack of knowledge there. 
•   Cases shown are likely overconstrained. 

“Steady-state” gradient sensitivities with 
respect to heating power computed on a 
high temperature version of the CYCLONE 
base case. Simulations performed on NERSC 
Edison and Hopper. 

Sensitivity of Plasma Gradients to Applied Heating 
Expense of global gyrokinetic full-f simulation: build surrogate response  

•  Enrich surrogate(aka response surface) with local sensitivity information 
•  Perturbational local approach for flexibility, efficiency 

•  Figure on Right:  R/Lt  sensitivity  to heating power P0 computed via	
  a	
  global	
  surrogate (curve 
fit) or local perturbation. 

•  Local perturbation faster; computable from restart file of “steady-state” high-fidelity XGC1 
run(flexibility). 

•   Currently examining perturb. approach in wedge mode XGC1, XGC1-XGCa coupling. 

 Previous analysis: 
•   Piecewise linear basis functions. 
•   Maximum Likelihood Estimate 

(MLE )without estimate of width 
      of the posterior distribution. 
•   Behavior in r/a > 0.6 thought to 

be only weakly constrained. 
•   But, uncertainty there too small 

to be consistent with this. 

STRAHL takes electron 
profiles and initial 
guesses on impurity 
transport coefficients D 
and V and iterates to 
match exp. data. 
D and V are highly 
sensitive to profile 
uncertainties.  

•   Objective is to find D, V profiles that best reproduce the observed brightnesses b on each of the  
diagnostics. 
•   Nonlinear inverse problem: Key issues are existence, uniqueness and stability of the solution. 

Towards	
  UQ	
  for	
  Extreme	
  Scale	
  XGC	
  Simula5ons(UT-­‐Aus5n,	
  PPPL)	
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Data Management and UQ in Extreme Scale XGC Simulation 

ADIOS in EPSI 
§  Data staging with low-latency, tight coupling execution 

environments through in-memory data exchanges between 
different codes. 

§  Service Oriented Architecture (SOA) for on-demand 
coupling executions with support of dynamic workflow 
invocation. 

§  Selection and chunked reads to enable schedule 
optimization. 

§  Hierarchical data management with staging for multiple  
I/O resources and network staging is under development.  

Data-centric integrated execution environment 
Our focus is to support EPSI simulation by providing 
integrated data-centric execution environments for tight 
code coupling, staged data process, and monitoring system 
with a support of dynamic workflow system. 

ADIOS 
1.8 

Coupling 

Workflow 

Staging 

eSimon 

§  Low-latency, tight coupling 
§  SOA, on-demand approach 
§  Support heterogeneous environments 

§  Dynamic workflow execution 
§  On-line feed-back 
§  Machine-guided execution 
§  Provenance and knowledge discovery 

§  Hybrid, heterogeneous, … 
§  Continue to develop in-situ, in-transit, … 
§  Network staging over Wide-Area Network 

(WAN) 

§  Support intelligence 
§  Support semantic-rich data 
§  Automation 

Data Staging 

DataSpaces As a Service 
§  Provides data staging as a service to applications – persistent 

data and staging services across application instances 
§  Allows XGC processes to dynamically connect/disconnect to/from 

the staging service 
§  New approach targets more complex and dynamic workflows with 

tighter coupling; provides more flexibility 
§  DataSpaces as a Service improves resource efficiency and 

increase I/O performance 

Data-centric Mapping in DataSpaces 
 
 

EPSI coupling workflow 
§  Goal: To enable tightly coupled XGC1 and XGCa workflow using 

memory to memory coupling. 
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Preliminary Results for In-node Staging  
§  Performance comparison with file-based staging 

and in-memory staging on dedicated servers 
§  Particle data read time reduced by ~98% compared 

to file-based and by ~90% compared to staging on 
dedicated servers 

§  Turbulence data read time reduced by ~99% 
compared to file-based and by ~96% compared to 
staging on dedicated servers 

Illustration of the data-centric mapping of the application process for 
concurrently coupled workflow 

ADIOS Vis Schema 
§  Create an easy-to-use schema for ALL 

ADIOS codes. 
§  Facilitates data sharing without adding 

code complexity 
§  Visualization schema: Semantics of the 

data for the purpose of visualization.  
§  Describing visualization data for various 

tools (VTK, Matlab, ParaView). 

XGC Data Management 
§  Manage hierarchical data and resources 
§  Integrated staging services 
§  Support for ADIOS Vis Schema.  

EAVL: Extreme Scale Analysis and Visualization Library  

XGC	
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Data staging for XGC1-XGCa workflow:  
In-memory coupling with DataSpaces 
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Illustration of using data staging service (DataSpaces-as-a-Service) to 
build the XGC1-XGCa workflow: connecting the different component 
applications, enabling data exchange and sharing. The UQ “telescoping” approach in EPSI 

1. UQ in reduced size tokamaks-more details (e.g. gradients) and samples to 
construct  resp. surface ✔ 

2. Scaling-up the UQ results to larger sizes ✔(telescoping): limited number of studies  
•   Calibration/enrichment of the telescoped response surface. 
•  Validation of predictions against present-day experiments.(including UQ on 

experimental data).  Extension/Numerical version  of experimental scaling laws 
for predicting ITER performance. 

•  Use of experimental data to inform surrogate model. 
3.  Telescope further to ITER-scale, compare prediction against ITER-scale XGC1 

simulations  
Telescoping and calibration considerations:  
• Simulation and data-driven separation  of scale-independent and –dependent 
quantities.  
•  Physics guidance important-response surface should inform, not dictate, higher-

fidelity studies. 
•  Negative telescoping results also useful-identify key regimes in parameter space 

for high-fidelity simulation(e.g. bifurcations in parameter space), compatible with 
Expected Information Gain(EIG) base approaches. 
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XICS and VUV sightlines

Challenges:	
  	
  Global	
  nonlinear	
  system	
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  scale-­‐inseparable	
  and	
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  self-­‐
organizing	
  mul.physics.	
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Challenge: how to perform UQ for extreme scale XGC1? 

This question is more challenging in a global nonlinear system where 
the multi-physics are scale-inseparable and nonlinearly self-
organizing in both physics and configuration space. 

•  The UQ telescoping approach in EPSI 
# Study UQ in reduced size tokamak 
# Scaling-up the UQ results to larger sizes 

(telescoping): limited number of studies 
# Midway calibration of the telescoping: 

•  Against present-day experiments, while 
sizing-up (validation) 
#  Need UQ on experimental data, too. 

•  Telescope UQ further to ITER 
! Telescoping and calibration consideration:  

•  Separation between scale-independent 
and –dependent quantities.   

•  Physics understanding can help the 
separation. 
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  Imaging	
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  and	
  Vacuum	
  UV	
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  sightlines	
  in	
  Alcator	
  C-­‐Mod	
  
	
  

•  Agreement	
  on	
  core	
  XICS	
  chords	
  is	
  good	
  in	
  all	
  
cases;	
  outer	
  XICS	
  chords	
  shows	
  widest	
  varia.on	
  	
  

•  Agreement	
  on	
  VUV	
  spectrometer	
  is	
  reasonable.	
  	
  
•  This	
  shows	
  the	
  importance	
  of	
  accoun.ng	
  for	
  the	
  

possibility	
  of	
  mul.ple	
  solu.ons.	
  
•  Next	
  steps:	
  include	
  ne,	
  Te	
  profile	
  uncertain.es.	
  	
  

Ini5al	
  “Telescoping”	
  Studies	
  Details	
  
•  Builds	
  on	
  mod.	
  CYCLONE	
  hea.ng	
  study-­‐provide	
  Q,	
  dQ/dP	
  	
  at	
  various	
  hea.ng	
  power	
  
•  Telescoping	
  parameter	
  is	
  1/ρ*	
  (or	
  a/ρi).	
  	
  Scaling	
  is	
  achieved	
  by	
  increasing	
  magne.c	
  field	
  
•  Compute	
  Q,dQ/dP	
  at	
  range	
  of	
  ρ*	
  values,	
  as	
  well	
  as	
  mul.ple	
  values	
  of	
  P0..	
  	
  	
  
•  Compute	
  krieging	
  surface	
  in	
  the	
  scaling	
  parameter	
  and	
  the	
  uncertain	
  model	
  

parameter(s).	
  	
  	
  
•  Predict	
  Q,dQ/dP	
  at	
  a	
  higher	
  value	
  of	
  a/ρi.	
  	
  How	
  valid	
  is	
  “reduced-­‐size”	
  data?	
  
•  As	
  number	
  of	
  model	
  parameters	
  increase,	
  leverage	
  QUEST	
  soeware:	
  QUESO,	
  GPMSA	
  
	
  

Future	
  “Telescoping”	
  Work	
  
•  Approach	
  validated	
  in	
  for	
  .5	
  <	
  ρ*	
  <	
  1.5	
  

CYCLONE	
  case	
  values.	
  
•  Adding	
  addi.onal	
  QoI(thermal	
  diffusivity)	
  
•  Add	
  addi.onal	
  parameters	
  present	
  in	
  

hea.ng	
  model	
  (torque,	
  source	
  profiles)	
  
•  Incorporate	
  uncertainty	
  in	
  magne.c	
  data	
  

into	
  predic.on	
  response	
  surface.	
  
•  Derive	
  approx.	
  uncertainty	
  es.mates	
  for	
  

future	
  use	
  in	
  response	
  surfaces.	
  
•  Move	
  response	
  surface	
  simula.ons	
  and	
  

scaling	
  closer	
  to	
  available	
  exp.	
  data.	
  
	
  
	
  
	
  
	
  
	
  


