
Logical Tiling in An AMR Framework:
Implementation and Performance

To address performance challenges that will accompany next generation node architectures based on many-core processors with NUMA domains, we have
introduced tiling into BoxLib and Chombo. Tiling is a well-known loop transformation that can improve both serial and parallel performance of structured
grid codes.

BoxLib and Chombo

bool tiling = true;

// Loop over tiles rather than grids

for (MFIter mf(mf,tiling); mf.isValid(), ++mfi) {

//Define the tile of this iteration. This tile, rather than the grid that the tile

// is a part of, will be used to define the extent of the data that the subroutine will

// operate on.

const Box& tbox = mfi.tilebox();

// Get a reference to the FArrayBox so that we can access both the data and the size

// of the FArrayBox. The FArrayBox itself is unchanged by using tiling.

FArrayBox& fab = mf[mfi];

// Define the double* pointer to the data of this FArrayBox.

// The dataPtr of the FArrayBox is unchanged by using tiling.

double* a = fab.dataPtr();.

// Define abox as the Box on which the data in the FArrayBox is defined.

// This is also unchanged by using tiling.

const Box& abox = fab.box();

// We can now pass the information to a Fortran routine, using the

// index information from tbox rather than abox to specify the work region.

f(tbox.loVect(), tbox.hiVect(), a, abox.loVect(), abox.hiVect());

}

Implementation in BoxLib

Tiling

Speed-up on a Node of Edison (12 cores)

Future Plans

Weiqun Zhang, Ann Almgren (BoxLib); Anshu Dubey, Daniel Graves (Chombo)*
LBNL

AMR + Tiling
The fact that a tiling strategy must work in the context of complex multiphysics
applications on adaptive grid hierarchies dictates three necessary features. The
tiling strategy must

• work for a union of grids that are not necessarily of equal size and shape, and
that do not necessarily span the entire rectangular domain

• be such that the tile size can be modified depending on the nature of the loop,
as different parts of the algorithm may have very different computational and
communication demands.

• be sufficiently lightweight to adapt to the frequently changing grid structure at
all levels but the coarsest as the simulation evolves.

• BoxLib and Chombo are mature, publicly
available software frameworks for building
massively parallel block-structured AMR
applications.

• Refinement in time and space

• Implemented as layered C++ / Fortran.

• High-performance implementations using
hybrid parallelism: MPI + OpenMP

• Logical tiling decreases working set
size  reduces cache misses 
improves single-thread performance

• Logical tiling enables more effective
use of threads on many-core
architectures

• Regional tiling will manage data
locality to address NUMA issues

Grid

Region

Tile

GNU compiler Intel complier

Tile Size Time(s) Speedup Time(s) Speedup

128 × 4 × 4 8.5 3.4 8.7 1.8

128 × 8 × 8 9.0 3.2 9.6 1.6

128 × 16 × 16 9.6 3.0 10.5 1.5

128 × 32 × 32 23.7 1.2 10.4 1.5

128 × 64 × 64 24.4 1.2 10.9 1.4

no tiling 28.6 – 15.5 –

• Performance testing of logical tiling framework for large-scale Nyx
calculations on Edison and Cori

• Optimal tile size for different algorithmic components?

• Explore different execution models with details hidden in tile iterator.

• Further development includes incorporation of regional tiling through
integration of TiDA library

Speed-up on a Node of Babbage (60 cores)Serial Speed-up on a Single Core of Edison

*Joint work with Tan Nguyen, John Shalf (LBNL) and Didem Unat (Koc Univ.)

	Logical Tiling in An AMR Framework: �Implementation and Performance

