U.S. Department of Energy SciDAC Partnership Predictive Computing for condensed matter

About Us

The Team Publication Software Events Join Us

University of Illinois at Urbana-Champaign

College of William & Mary

Peter Abbamonte (Physics, UIUC)

and the charged stripes in copper-oxide

Garnet K.-L. Chan (Chemistry, Princeton)

Chan is a recognized expert in strong correlation theories including density matrix renormalization

DMRG as a practical, powerful tool for strongly

correlated molecular electronic structures.

structures. Ryu is a pioneer in the use of

topological insulator in two dimension.

Shinsei Ryu (Physics, UIUC)

group (DMRG), tensor networks, and density matrix

functional theory. He has, in particular, established

Ryu specializes in mathematical theories of strong

correlation and other condensed phase electronic

phases of matter and has predicted the fractional

entanglement entropy in classifying topological

superconductors.

Hirata is a theoretical/computational chemist and an expert in electron-correlation theories for molecules and solids. He is the primary author of the computer-generated, high-rank electroncorrelation modules in DOE's massively parallel NWCHEM suite of software, implemeting several of his original methods.

Lucas Wagner (Physics, UIUC) - Co-lead PI

Wagner is the principal author of the quantum Monte Carlo program, QWALK, with which he has performed predictively accurate calculations on strongly correlated systems.

Ceperley is a theoretical/computational physicist and an authority of quantum Monte Carlo (QMC). He invented a number of QMC algorithms and is the author of massively parallel QMCPACK software.

Bryan Clark (Physics, UIUC)

Clark has considerable experience in both conventional guantum Monte Carlo (QMC) and novel extensions such as QMC in the Hilbert space. He has developed a large-scale parallel algorithm of QMC in PIMC++.

Shiwei Zhang (Physics, W&M)

Zhang specializes in computational condensed matter physics and materials science. Zhang is a pioneer in the use of quantum Monte Carlo (QMC) in the Hilbert space for strong correlation. He is the inventor of the phaseless auxiliary field QMC.

© 2013 Predictive Computing. All rights reserved.

Strongly correlated condensed matter

Kim, Ko, Frenzel, Ramanathan, Hoffman Applied Physics Letters 96, 213106 (2010)

Strongly correlated condensed matter

Objective

Start with

Solve $E_i \Psi_i(r_1, r_2, ...) = \hat{H} \Psi_i(r_1, r_2, ...)$

minimal approximations including electron correlations explicitly

Objective

+
$$H = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{\alpha i} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{\alpha \beta} \frac{Z_{\alpha \beta}}{r_{\alpha \beta}} \sum_{ij} \frac{1}{r_{ij}}$$

Start with

Solve
$$E_i \Psi_i(r_1, r_2, ...) = \hat{H} \Psi_i(r_1, r_2, ...)$$

minimal approximations including electron correlations explicitly

Fundamental equation

$$\hat{H}|\Psi_i\rangle = E_i|\Psi_i\rangle$$

$$\hat{H} = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{\alpha i} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{\alpha \beta} \frac{Z_{\alpha\beta}}{r_{\alpha\beta}} \sum_{ij} \frac{1}{r_{ij}}$$
$$\Psi(r_{1}, r_{2}, r_{3}, \ldots)$$

This is not a theoretical problem; this is a computational problem!

PDE in many dimensions (thousands).

Start with subangstrom resolution of electron correlations

To be able to describe mesoscale correlated physics

Method	Type of Hilbert space	Major approximati on	Variational principle	Investigator	Code
FN-DMC	Continuum	Node of wave function	Yes	Ceperley, Wagner	QWalk, QMCPACK
AF-QMC	Discrete	Phase of wave function	Somewhat	Zhang	development
DMRG/ DMET	Discrete	Local matrix product states	Yes	Chan	available
MERA	Discrete	Ansatz	Yes	Ryu	development
MP perturbation theory	Discrete	Perturbation /interaction strength	Νο	Hirata	development

Benchmarking

The methods are all highly accurate compared to traditional electronic structure techniques like density functional theory.

How accurate?

Where do they fail?

Electronic structure of the cuprates

Standard methods fail to describe any of this!

FN-DMC: magnetic properties

AFM $(S_z=0)$

FM ($S_z=2$)

FN-DMC: magnetic properties

INCITE, 1 million cores

High accuracy on challenging systems from FN-DMC

Accurate results on the cuprates and other challenging materials

What functional to use for dense hydrogen?

D. Ceperley University of Illinois

Benchmark various DFT functionals on data sets of realistic 54/96 hydrogen atom systems using accurate QMC energies and forces.

INCITE award for computer time

Phys. Rev. B 89, 184106 (2014)

AF-QMC approach for excited states

AFQMC with virtual orbital orthogonalization

- Ma, SZ, Krakauer: NJP 2013

MP2: Phase transition in solid CO_2

Sode, Keceli, Yagi, and Hirata, *JCP* (2013); Li, Sode, Voth and Hirata, *Nature Comm* (2013)

Multi-scale: nailing down the benzene crystal

Computations made possible by methods (e.g. local CC) developed with DOE support

Nailing down the benzene crystal

Jun Yang, GKC et al., Science, in press (2014)

New extensions to methods

Obtaining new quantities or higher accuracy than before.

Connecting two methods that were previously disparate.

Highlights in DMET

spectral functions from DMET

(a "better and cheaper" DMFT)

Booth, GKC, submitted to Phys. Rev. Lett.

phase diagram of 2D Hubbard model (resembles phase diagram of cuprates) Zheng, GKC, in preparation

In addition

Intermediate phases of the honeycomb Hubbard model: Chen, Sharma, Booth, Knizia, GKC, submitted to Phys. Rev. Lett.

Metal-insulator transitions across the transition metal oxides: Chen et al., Millis, GKC in preparation (CMCSN collaboration)

Generating effective models

Ab-initio effective Hamiltonians from canonical transformations

works well in molecules, ready to be applied to solids

Watson, GKC, in preparation

Effective Hamiltonians fitted to FN-DMC

Applied to graphene, small effective U

Connects continuum with discrete models Changlani, Zheng, Wagner

Parallel MC-MP2, MP3, MP2-R12

Willow, Hermes, Kim and Hirata, JCTC (2013); Willow and Hirata, JCP (2014); Willow,

Zhang, Valeev, and Hirata, JCP Comm (2014)

Challenges: data

Many-body wave function

Most compact representation for a complicated wave function. How can we store this systematically for many systems?

Data analysis: high dimensional feature extraction; any takers?

Computational development

- •Methods are are computationally demanding (three INCITE awards among our collaboration)
- Monte Carlo methods (example from cuprates): one step: ~1 ms perform many millions of times
- •**TAU** performance tools used: 2x speedup of QWalk on Mira

Outlook

A suite of methods <u>http://www.predictive-scidac.org</u>

Now partnered with QUEST

Method	Type of Hilbert space	Major approximat ion	Variational principle	Investigato r	Code
FN-DMC	Continuum	Node of wave function	Yes	Ceperley, Wagner	QWalk, QMCPACK
AF-QMC	Discrete	Phase of wave function	Somewhat	Zhang	development
DMRG/ DMET	Discrete	Local matrix product states	Yes	Chan	available
MERA	Discrete	Ansatz	Yes	Ryu	development
MP perturbatio n theory	Discrete	Perturbatio n / interaction strength	No	Hirata	development

High accuracy for correlated electron systems

New properties