Discontinuous methods for massively parallel

quantum molecular dynamics:

Lithium ion interface dynamics from first principles
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Overview

Li-ion batteries have revolutionized consumer electronics
and have the potential to do the same for transportation
(e.g., plug-in hybrids, all-electrics, aircraft) and electrical
distribution (e.g., load leveling)

To do so, energy/power density, lifetime, safety must be
increased

Key issue: solid-electrolyte interphase (SEIl) layer at
electrolyte-anode interface, product of electrolyte
decomposition

Understanding has been hindered by need for both quantum
mechanical description and sufficiently large length/time
scales to capture necessary complexity

In this work, we:

— Develop new Discontinuous Galerkin (DG) based
electronic structure method to accomplish quantum
molecular dynamics (QMD) on an unprecedented scale

— Apply new method to advance understanding of the

chemistry & dynamics of electrolyte/SEl/anode systems ~ MP snapshot of SEl layer in Li-ion cell



Simulations

Initial phase of project, while new DG/PEXSI
code is developed and optimized: Qbox [1] for
systems of < 2,000 atoms

Li* solvation and diffusion: determine diffusion
coefficients, effect of counter-ion, differences
in bulk vs near interface

Molecular dynamics simulation of
50/50 ethylene carbonate/propylene
carbonate electrolyte

[1] Gygi, Draeger, et al., Proc. ACM/IEEE Supercomputing '06; Gygi, IBM J. Res. Dev., 2008

[Adapted from K. Xu, Chem. Rev. 104, 4303 (2004)]
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» Li* prefers tetrahedrally-coordinated first

solvation shell

 Stronger solvation for Li* than PF4~

* Mixture shows preference for Li* to be

solvated by EC over EMC

 PF; more mobile than Li* due to weaker

solvation
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lon diffusion

Ethylene Carbonate (EC)

Dp (106 cm?/s)
EC 52+0.8 7.1x0.9
EMC 96+1.6 30.8 +8.8
3.7 EC/EMC 26+1.3 57124

« Motion of Li* and PF, in EMC less correlated
than in EC

e Mixture shows correlated motion similar to EC

» Faster diffusion for Li* seen in EMC than EC

» PF4 has larger diffusion coefficient than Li*
since Li* is more strongly solvated than PF-

 Sijze of coefficient tied to solvation structure




Simulations

e Asthe new DGDFT/PEXSI method and code ramp up, we transition to it for
larger scale simulations, up to 10,000 atoms

e Full electrolyte-anode and electrolyte-SEIl systems
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EC/PC mixture (+ LiPF;) on graphite (left) and Li,CO; (right), used to study chemical reactions on the
anode surface (for initial SEl formation) and a representative SEI compound (for SEI growth/evolution)



How to reach the needed length and time scales?
Throw off the shackles of continuity.

Rethink the need for eigenfunctions.



Quantum molecular dynamics (QMD)

Solve Kohn-Sham equations for electronic structure, compute quantum mechanical
forces, move atoms, repeat — thousands to hundreds of thousand of times

Kohn-Sham equations
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Pushing the current state of the art: Qbox application and development

e Strong scaling to 65,536 cores on BG/Q
— Uses hardware threading & SIMD registers on BG/Q

— Optimized BLAS/ScalLAPACK kernels on BG/Q
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Current focus: Rayleigh-Ritz

Metallic calculations rely on diagonalization in
the occupied subspace (Rayleigh-Ritz)

Limits both efficiency (N3) and parallel scaling

In collaboration with FASTMath, we are
investigating alternatives to minimize or eliminate
Rayleigh-Ritz entirely

— Trace penalty minimization: minimize trace of Rayleigh
guotient and penalty term to enforce orthogonality [1]

— Projected Preconditioned Conjugate Gradient (PPCG):
Replace 3m x 3m Rayleigh-Ritz with m 3x3 ones [2]

— PPCG now implemented in Quantum Espresso parallel
planewave code

— Initial tests indicate factor of two speed up (already) and
potentially superior parallel scalability relative to
current-state-of-the-art Davidson solver

Goal: Metallic as fast as insulating, 2,000-atom
metallic QMD

1600 gold atoms (16384 orbitals)
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[1] Wen, Yang, Liu, Zhang, J. Sci. Comp., submitted
[2] Vecharynski, Yang, Pask, J. Comp. Phys., submitted



Moving beyond the current state of the art: DGDFT

DG framework allows solving the Kohn-Sham equations in a discontinuous basis

* Because basis can be discontinuous, can possess number of desirable properties
simultaneously:

— Efficient (few tens of DOF/atom)

— Systematically improvable

— Strictly local: identically zero outside prescribed
subdomain, zero overlap across subdomains

— Orthonormal: standard eigenproblem, well-cond.

e How?

— Partition domain into subdomains (elements)

— Solve Kohn-Sham equations in each element

— Basis is union of local Kohn-Sham solutions

Solve large N-atom problem in highly efficient basis of O(N) local Kohn-Sham solutions



DG method

e Discontinuity is accommodated by surface (“flux”) terms [1 - 4]

e Kohn-Sham Hamiltonian becomes
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[1] Lin, Lu, Ying, E, JCP 2012; [2] Lin, Lu, Ying, E, JCP 2012; [3] Lin, Ying, PRB 2012, [4] Kaye, Lin, Yang, submitted



Energies, forces, degrees of freedom

* Energies to < 1e-3 Ha/atom, forces to < 1e-3 Ha/au absolute error with ~10 basis

funcs/atom Si 1x1x4: random displacements
max
~40 DOF/atom avg
for 3D

e Hard atoms: Li-ion system—Li, P, F, C,H, O

* Forces to 1e-4 Ha/au absolute error with 15 basis funcs/atom
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e Largest system so far: 4,392 atoms on 2,196 CPUs by direct diagonalization



E_tot per atom {e¥)

Molecular dynamics
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Energy drift < 1.5 meV/atom/ps Agreement with previous literature

and independent calculations



Current focus: local K-S solves

Solution of the local ~50-atom Kohn-Sham g
problems in each element o -
¥ -
2

In collaboration with FASTMath, we are
parallelizing the local K-S solutions to remove
this bottleneck
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For the largest systems: PEXSI

Solving for Kohn-Sham wavefunctions of N atom system scales as O(N3)

Solve for density directly instead
plr) = diag (fi(Hlp(x)] — pd(a,a"))

H = Hamiltonian, u = chemical potential, f5(z) = 2/(1 + %)
£ =1/kgT, kg = Boltzmann constant, 7" = temperature

Need efficient approximation of Fermi function > Pole expansion [1]

) P WP m I — hon-analytic
fale —p) = Jm; S il % mm spectrum
z,w! € C are complex shifts and weights ' \ ’ il

Need efficient inversion e : — ) A —R;

Need only diagonal = Selected Inversion [2] “ i . By

- Pole Expansion and Selected Inversion (PEXSI)
No need to compute eigenfunctions or eigenvalues
Scaling O(N) for quasi-1D systems; O(N?) for metallic 3D

[1] Lin, Lu, Ying, E, 2009; [2] Lin, Yang, Meza, Lu, Ying, E, 2011



Energies, forces, poles

e Metallic carbon nanotube, CNT (8,8), 512 atoms, atomic orbital basis [1]

e Accuracy of expansion at T = 300K

# Poles

Epgpst — Erer (V)

MAE Force (eV/Angstrom)

20
40
60
80

5.868351108
0.007370583
0.000110382
0.000000360

0.400431
0.001142
0.000026
0.000002

e Largest 3D system so far: 24,000-atom water using SIESTA DZP basis [2]

— 314 sec SCF iteration on 10,240 cores

— 30-fold speedup relative to diagonalization

[1] Lin, Chen, Yang, He, J. Phys.: Cond. Mat., 2013
[2] Lin, Garcia, Huhs, Yang, J. Phys.: Cond. Mat., 2014



PEXSI released
PEXSI

The PEXSI library is available online .
Main Page

http://pexsi.org/, BSD license

Welcome to the documentation of PEXSI (current version: v0.7.1)

* |ntroduction

 Integrated with SIESTA for i -5

o License
accelerating atomic-orbital based g —
calculations + Download

+ |nstallation

e Beingintegrated into CP2K and © Dependencies

o Build PEXSI
other electronic structure =
o Using plans
a Cka eS o Paralle| selected inversion for a real symmetric matrix
p g o Parallel selected inversion for a complex symmetric matrix
([ ] M assively pa ra I Iel to 10’000 - o Solving Kohn-Sham density functional theory: |

o Solving Kohn-Sham density functional theory: Ii

100,000 processors on high + Core Functionaiiy

o Basic
performance computers o Data type

o Pole expansion

o Factorization

o Selected Inversion

o CIC++ interface

o FORTRAN interface
[M. Jacquelin, L. Lin and C. Yang, submitted] » Frequently asked questions

¢+ Troubleshooting


http://pexsi.org/

DG + PEXSI

e 2544-atom Li-ion electrolyte

Running times for Li2544
% LU factorization

=3 Sellnv P2p

%% Symbolic factorization

256 576 1024 2116 4096
Number of processors

e 12x12x12 element partition, 68 basis functions per atom
e PESXI: ~250 sec per pole per u iteration on 1024 cores

e High accuracy -> 40 poles, ~2 u iterations -> ~500 sec/SCF on 40,960 cores



Current focus: factorization

Parallel scaling of LU factorization

By pipelining and overlapping communication with computation, Selinv now faster
and better scaling than SuperLU_DIST

SuperLU_DIST scales to only ~1000 CPU

In collaboration with FASTMath, we are exploring alternatives for better scaling
sparse direct factorization

— More robust symbolic factorization

— New symmetric factorization code under development: exploring block fan-out and fan-both
methods for better parallel scaling

— Leverage results of previous SCF iteration: previous H, LU?

To get SCF step times down from minutes to seconds for 3D systems may require
iterative methods to fully leverage information from previous SCF/MD steps



New collaboration: SDAV

Valerio Pascucci, Attila Gyulassi (University of Utah),
Timo Bremer (LLNL)

Systematic topological analysis of quantum
mechanical data: density, potential, wavefunctions

Compute Morse-Smale complex: minima, maxima,
saddle points = mountains, voids, ridges, valleys,
connectivity

Evolution in space and time
Bond formation and breaking
Voids/tunnels for Li+ transport

On the fly = inform/accelerate MD?

Valley lines connecting voids
in QMD charge density

Saddle-max-saddle
connections in distance field



Thanks for your attention!

Please visit us at http://www.dgdft-scidac.org
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