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Why UQ? Why in SciDAC?

Why UQ?
Assessment of confidence in computational predictions
Validation and comparison of scientific/engineering models
Design optimization
Use of computational predictions for decision-support
Assimilation of observational data and model construction

Why UQ in SciDAC?
Explore model response over range of parameter variation
Enhanced understanding extracted from computations
Particularly important given cost of SciDAC computations
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Uncertainty Quantification and Computational Science
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Key Elements of our UQ strategy

Probabilistic framework
Uncertainty is represented using probability theory

Parameter Estimation, Model Calibration
Experimental measurements
Regression, Bayesian Inference

– Markov Chain Monte Carlo (MCMC) methods

Forward propagation of uncertainty
Polynomial Chaos (PC) Stochastic Galerkin methods

– Intrusive/non-intrusive
Stochastic Collocation methods

Model comparison, selection, and validation
Experimental design and uncertainty management
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QUEST UQ Software tools

DAKOTA: Optimization and calibration; non-intrusive UQ;
global sensitivity analysis; ∼10K registered downloads.

QUESO: Bayesian inference; multichain MCMC; model
calibration and validation; decision under uncertainty.

GPMSA: Bayesian inference; Gaussian process
emulation; model calibration; model discrepancy analysis.

UQTk: Intrusive and non-intrusive forward PC UQ; custom
sparse PCE; random fields.

MUQ: Adaptive forward PC UQ; advanced MCMC and
variational methods for inference; efficient surrogates.
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DAKOTA – Recent Developments – dakota.sandia.gov

High-dimensionality:
Sparse representations

Memory conserving approaches to high-dimensional
compressed sensing and variance-based decomposition
Multifidelity compressed sensing

PCE regression with high dimensional basis adaptation.
Model Complexity:

Orthogonal least interpolation
Tail probability estimation – adaptive importance sampling
Improved response QoI scalability

Software Integration:
Bayesian calibration with QUESO/GPMSA/DREAM

Architecture:
Dynamic multi-level job schedulers (MPI & hybrid)
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QUESO – Recent Developments UT Austin

Migration to Github; expanded user base significantly
https://github.com/libqueso/queso

Software quality and usability improvements
Full user documentation and a large number of examples
Developer documentation in development
QUESO-Dakota interface

Ongoing effort to add Gaussian process (GP) based
emulation capabilities to QUESO
Using GPMSA as a reference
Enabling Dakota to access such new capabilities in QUESO

Inference of random fields
Initial support for fault tolerant sampling
Initial support for heterogenous architectures
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Sparsity and Compressive Sensing

Many physical models have a large # of uncertain inputs
UQ in this high-dimensional setting is a major
computational challenge

too many samples and/or large # PC modes
Yet physical models typically exhibit sparsity

A small number of inputs are important
Seek sparse PC representation on input space

Small number of dominant terms

Compressed sensing (CS) is useful for discovering sparsity
in high dimensional models
Identify terms that contribute most to model output
variation
Ideal for when data is limited
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Sparse Representations – developments SNL

CS algorithms have been developed for under-determined
solutions of the coefficients of PC expansions (PCEs)

basis pursuit, basis pursuit denoising
orthogonal matching pursuit
least angle regression
least absolute shrinkage and selection operator (LASSO).

Orthogonal least interpolation (OLI)
determines the lowest order PCE that can interpolate a
given (unstructured) data set.

New capabilities include:
support for gradient (adjoint) enhancement
fault tolerance
cross-validation of algorithm parameters
either structured (sub-sampled tensor product) or
unstructured (Latin hypercube) grids
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Adaptive Basis Selection

Set	
  1 Set	
  2 Set	
  3 

Cardinality of total degree basis grows factorially with the
number of uncertain inputs.
Even for lower dimensional problems redundant basis
terms can degrade accuracy
To reduce redundancy and improve accuracy the PCE
truncation can be chosen adaptively.
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Random Fields – Relevance

Many applications involve uncertain inputs/outputs that
have spatial or time dependence
Such an uncertain function, represented probabilistically, is
a random field/process.

It is a random variable at each space/time location
Generally with some correlation structure in space/time
An infinite-dimensional object

The Karhunen Loeve expansion (KLE) provides an optimal
representation of random fields, employing a (small)
number of eigenmodes of its covariance function
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Random Fields – sparse data SNL

Developed a Bayesian procedure for KLE construction
given sparse data

Bayesian Principal Component Analysis (BPCA)
Address challenges arising due to

approximate knowledge of the covariance matrix
lack of positive definiteness of sample covariance matrix

BPCA framework explores the space of orthonormal
vectors, seeking those that best explain the data

Likelihood density p(Φ) is peaked at

Φ∗ = arg min
Φ∈Vk(Rd)

n∑
i=1

‖xi − PΦx
i‖2

where Vk(Rd) is the space of k orthonormal d-dimensional vectors

Resulting KLE incorporates uncertainty due to small
number of samples
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BPCA Example – Data from a 3D MVN
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BPCA Example – Brownian motion – 25 samples

500-dimensional Brownian
motion stochastic process.
Using only 25 samples, we
compute samples from p(Φ) and
plot the first three principal
components.
The dark solid lines represent the
principal components and the
shaded region represents error
bars based on samples using the
Bayesian PCA approach.
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BPCA Example – Brownian motion – 250 samples

Using 250 samples
Modes are evaluated with
improved accuracy
Lower uncertainty
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Random Fields – large scale NOAA data – SVD

KLE for uncertain Sea Surface Temperature (SST)
1/4-degree spatial resolution data

106-dimensional random field encompassing spatial and
temporal uncertainty in SST data
SVD using Trilinos / parallelized block Krylov Schur solver
Hopper / NERSC implementation

Mean SST 1st KL mode
SNL Najm QUEST 18 / 24
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Adaptive Sparse Quadrature (ASQ) for UQ Duke/MIT

Non-Intrusive Pseudospectral projection using sparse
tensorization of 1-D quadrature formulas:

prevent internal
aliasing
improve accuracy
reduce number of
simulations

Accuracy Requirement Comparison

Final projection exactness requirements are significantly reduced!
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Polynomial Index
Required Quadrature Exactness

In this schematic example, we set the polynomial tensor K and prescribed
L. In practice we set L which prescribes K

• A PSP with L has the same realization stencil as a quadrature built
with L but admits more polynomials than a direct projection

• Especially high-order monomial terms
Justin Winokur Hierarchical Sparse Adaptive Sampling 8 / 34

Adaptivity:
progressive construction by introducing new tensorizations
with cost control
robust error indicator to guide the adaptation process
nested hierarchical approximation (local dimension-wise
error control)
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UQ with ASQ – Ocean Dynamics Simulation

Example of application: uncertainty in subgrid mixing and wind
coupling parameterization (4-dimensions) in hurricane Ivan
simulations (. 400 realizations)Variance(analysis(
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Asymptotically Exact MCMC – I MIT

Forward UQ yields useful surrogates for Bayesian
inference
Yet surrogates should be most accurate in regions of high
posterior probability
We have developed a new approach for incrementally
constructing local approximations during MCMC

earlier times later times
SNL Najm QUEST 21 / 24
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Asymptotically Exact MCMC – II

Algorithm applies approximate MCMC transition kernels,
but is provably ergodic with respect to the exact posterior
Probability of evaluating the full forward model during a
given MCMC iteration approaches zero
Speedups of several orders of magnitude over direct
MCMC sampling

Applied to large-scale
inference problem with a
black-box forward model :
MITgcm for ice-ocean
dynamics in the West
Antarctic Ice Sheet (with P.
Heimbach, MIT)

Code available in the latest
release of MUQ
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Asymptotically Exact MCMC – III

Elliptic PDE inverse problem: ∇ · (κ(x)∇u(x)) = −f
Infer permeability field κ(x) from limited/noisy observations
of pressure u
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Cost of chains

Only 300 model evaluations needed for 105 MCMC samples!
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Closure

Highlights of recent progress
Software
Algorithms

Refining and robustifying QUEST algorithms and software
to address UQ challenges in large-scale problems

high dimensionality
large range of scales
complex models and high computational cost

Addressing UQ needs of SciDAC application partnerships
Eight funded active partnerships

Read more at: quest-scidac.org

SNL Najm QUEST 24 / 24


	Introduction
	Progress Highlights – Software
	DAKOTA
	QUESO

	Progress Highlights – Algorithms
	Sparsity
	Random Fields
	Adaptive Sparse Quadrature
	Asympotoically Exact MCMC

	Closure

