A Iterative unstructured-mesh Ginzburg-Landau solver on MPI clusters
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e Time-dependent Ginzburg-Landau

TDGL equations:
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In dimensionless units:

(D + i) = e(®)y — %P + (V — iA)* ¢ + ((r, 1)
KV X (VxA)=T,+J,+T,
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Coupled system for v and A:
(0 complex order parameter characterizing density of Cooper pairs
A vector potential for magnetic field
( and Z thermal fluctuations

e(r) = TC(I,_'FJ — 0 for T'— T, (critical temperature)

Total current: J=)+),.  J =Im [¢"(V —tA)y] — (Vi + 0:A)

Challenges
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Vortex detection
allows to save data
in “vector” format

The value of gradient
term with strong
magnetic field becomes
enormously large

Ay = —yB.:
Solution: (V, —i4,)% — e~ @¥B=y2¢iryB-
Reformulate finite-element discretization using

“link-variables”

* Works for time-invariant/spatially-uniform
magnetic fields (implementation in progress)

* Suggests an approach to the time-varying case:
“Maxwell’s equation” for link variables

Runtime
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Software/Algorithm stack

Leveraging power of SciDAC Institutes

Performance tuning
(core solvers)

FASTMath
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SDAV
(viz/data)

Parallel performance

TDGL runtime: 10 timesteps TDGL runtime: 10 timesteps

M

+

0

| 1 | | |
0 I I I I I I
0 200 400 600 800 1000 1200 0 10 20 30 40 50 60

Processors Processors / 16

" Good strong scaling: Saturates at 512 cores

" Communication-limited
" Run overhead: amortized with longer runs

= Overcome the communication “wall”
" Better on-the-node performance

= Relatively simple geometry — higher order
methods

= Spectral elements — dense linear algebra, more
flops per packet and load/store

" Prompted conversation with FASTMath
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Discretization/Meshing

Uniform system
relaxes to Abrikosov
lattice
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Straightforward

visualization requires a lot
Automatic refined: of da.ta: 30 sec movllle )
memory/cycles savings requires 200 GB of “raster

once solution features data
have stabilized
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Needs to be used sparingly and intelligently
v" Mesh coarse geometry

v Refined uniformly

v Relax solution on uniformly refined mesh
v' Derefinement on relaxed solution

Mapping to refined geometry
carries substantial overhead
during relaxation from
random state

Vortex detection allows to
save data in “vector”
format

T. modulation

Shape optimization

Determining optimal robust pinning landscape:
e Optimize critical current

 Minimize deviations from best case

* Min-max or min rms
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= Determine optimal inclusion configuration for o —
maximizing critical current optimum

= Use derivative-based/derivative-free
optimization

pinning configurations 6

Requires solution of adjoint operator
* Engaged PhD student

= |nitial input to optimization partners
(FASTMath)

* Langevin noise vs backward evolution?
* Temperature modulation model of inclusions?




