Critical Current in Various Pinning Landscapes
Andreas Glätz1, Igor Aronson1, George Crabtree1, Alexei Koshelev1, Ivan Sadovsky1, Dmitry Karpeev2, Carolyn Phillips2
1Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
2Mathematics and Computer Division, Argonne National Laboratory, Argonne, IL 60439, USA

Time-dependent Ginzburg-Landau

TDGL equations:

\[\frac{\partial \phi}{\partial t} = \mathcal{L}_{\text{GL}}, \]

\[[-10 -8 -6 -4 -2 0 2 4 6 8 10] \]

\[[-1 \times 10^{-4} -1 \times 10^{-3} 0.01 0] \]

\[\text{Modeling of pinning} \]

\[\text{Simulation results: } \]

\[B = 0.05 \cdot B_0 \]

\[V \]

\[I \]

Here: Regular simulation grid (on GPUs)

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]

Optimal critical current

\[B = 0.05 \cdot B_0 \]

Helical motion & Reentrance

Magnetic field & voltage for one disorder configuration

\[J_{\text{c}}(\alpha) \]

\[J_{\text{c}}(\alpha) \]

\[\alpha \]

\[\text{New discovery: a new periodically "rotating" vortex state appears at intermediate field strength having finite resistance} \]

Simulation

Results

Competing defects

\[\text{The effects from different defects are not additive. Additional defects are simultaneously decreasing the critical current at some directions of the magnetic field and increase it at other directions.} \]

Parallel fields

\[\text{Sample is discretized using a regular mesh of } 512 \times 128 \times 32 \text{ grid points with mesh size of } 0.3 \times 0.3 \text{ nm chosen} \]

\[\text{Simulation time: } 25 \text{ field steps for } 300 \text{ field values} \]

Numerical realization

- Sample is discretized using a regular mesh of $512 \times 128 \times 32$ grid points with mesh size of 0.3×0.3 nm chosen.
- Sample is periodic in x-direction.
- Inclusions are modeled by a different low-T_C component.
- 0-100 spherical inclusions with diameter r_{inc} are randomly placed in the volume.
- Average over different disorder realizations.
- A fixed constant current is applied in a direction as well as a variable magnetic field.
- Simulation time: 25 field steps for 300 field values.

Competing defects

\[\text{Commercial superconducting tape with nanorod inclusions is irradiated by heavy ions at } 45^\circ \text{ degrees understanding of the critical current depending on the angle of the external magnetic field} \]

Random spherical inclusions

\[B = 0.05 \cdot B_0 \]

\[J_{\text{c}}(\alpha) \]

\[\alpha \]

\[\text{Critical current also depends on magnetic field:} \]

\[\text{Experimental result: MoGe slab with parallel current and field} \]

Critical Current in Various Pinning Landscapes

\[\text{Modeling & Optimization} \]

\[\text{Random spherical inclusions} \]

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]

Critical Current in Various Pinning Landscapes

\[\text{Modeling & Optimization} \]

\[\text{Random spherical inclusions} \]

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]

Critical Current in Various Pinning Landscapes

\[\text{Modeling & Optimization} \]

\[\text{Random spherical inclusions} \]

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]

Critical Current in Various Pinning Landscapes

\[\text{Modeling & Optimization} \]

\[\text{Random spherical inclusions} \]

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]

Critical Current in Various Pinning Landscapes

\[\text{Modeling & Optimization} \]

\[\text{Random spherical inclusions} \]

\[\text{Critical currents for spherical (metallic) inclusions} \]

\[\text{Current-voltage characteristics for different inclusion concentrations: Inclusions are randomly distributed in the simulation volume; the critical current is determined by a fraction of the corresponding free-flow flow value} \]

\[\text{Instead of the concentration, the volume fraction and inclusion diameter are the two parameters characterizing the random spherical pinning landscape} \]