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Approach 1: Nested Hierarchical Adaptatior Low-Dimensional Test Problem
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Polynomlal Chaos Expansmns: Let F(S) be the model output, o Desirable to be able to asses and tune adaptathn along different directions Nested Product Space (no termination) Product Space (T1 termination)

parameterized by the d—dimensional random vector £&. Expand F'(&) in Nested consistently reduced error in inner space. Both product-space methods
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