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Abstract

We investigate two approaches to building sparse, adaptive representations of
quantities of interest depending on uncertain parameters and deterministic design
variables. We explore a nested approach, wherein we perform adaptive pseudo-
spectral projections (aPSP) in the space of design variables and conduct, indepen-
dently at a design point, the adaptation in the space of uncertain variables. We
also develop an alternative approach, in which aPSP is conducted in the design-
random parameter product space, and introduce a decomposition methodology to
guide the refinement of sparse grids. Specifically, we use the decomposed projec-
tion surplus estimates to tune both the grid adaptation and selective termination
criteria. We compare the performance for the two approaches in a simple test
problem, and then examine their performance for a shock-tube design experiment
involving a high-dimensional system of stiff ODEs. Computed results indicate
that, whereas both methods provide effective means for tuning the quality of the
representation in the deterministic and stochastic spaces, adaptive refinement in
the product space is generally more efficient than the nested approach.

Background

Polynomial Chaos Expansions: Let F (ξ) be the model output,
parameterized by the d−dimensional random vector ξ. Expand F (ξ) in
truncated series of an orthonormal polynomial basis

F (ξ) ≈
∑
k∈K

FkΨk(ξ) ⇒ Fk = 〈FΨk〉

Estimate 〈FΨk〉 with appropriate multi-dimensional quadrature

〈FΨk〉 ≈ 〈FΨk〉Q =
∑NQ

i=1F (ξi)Ψk(ξi)wi

Sparse Pseudo-Spectral Projection (PSP): Build projection with sparse
construction to avoid exponential scaling (of fully tensorized construction) and
internal aliasing (from insufficient exactness of sparse quadrature). Let P1

`F be
a 1D, level ` projection operator of F . Express P1

`F in terms of a telescoping
sum:

P1
`F =

∑̀
l=1

(
P1
l − P1

l−1

)
F =

∑̀
l=1

∆P
l F, ∆P

1F
.
= P1

1F

Then, the multi-dimensional, tensor-product projection is:
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F.

Adaptive PSP (aPSP): L can be any admissible multi-index and can be
built adaptively. Associated with each l ∈ L is a projection surplus:

ε(l) =
1

c0

∣∣∣∣(∆P
l1
⊗ ...⊗∆P

ld

)
F
∣∣∣∣ c0 = normalizing constant

• Define two sets, Active, A and Old, O, where L = A ∪O
• while η2 .=

∑
l∈A

ε(l)2 ≤ Tol, Choose l∗ ∈ A with highest ε(l)

• O := O ∪ l∗
• A := A \ l∗
• Add all O-admissible forward neighbors of l∗ to A
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Approach 1: Nested Hierarchical Adaptation

Nested Adaptation performs local “inner-
space” (u) adaptation at each realization of
the “outer-space” (p) adaptation on F (p,u)

• Allows for independent tolerances in both
p and u spaces
• Good control of p space realizations

• Enforces full tensorization of design
variable and uncertain parameter spaces
• Incurs a non-trivial cost

• Can be easily extended to hybrid
approaches combining different methods
for inner or outer representations

Nested adaption:

• Independently adapt in p with aPSP

• At each pi realization of the p adaption
• Adapt in u on g(i)(u) = F (p,u|p = pi)

• Independent, local K(i).

g(i)(u) ≈
∑
k∈K(i)

g
(i)
k Ψk(u).

• Compute
∣∣∣∣g(i)(u)

∣∣∣∣ as QoI for p-adaptation
• After p-adaptation converges, determine global g̃k,

Note: K .
=
⋃Np

i=1K(i)

g(i)(u) ≈
∑
k∈K

g̃
(i)
k Ψk(u) g̃

(i)
k =

{
g
(i)
k k ∈ K(i),

0 otherwise.

• Project the p dependent g(i)(u) in p space for a

global representation of F (p,u)

Approach 2: Sensitivity Tuned Adaptation in Product Space

Consider product space of ξ = (p,u) and perform aPSP in that product space.
• Exploits sparsity between the two spaces
• Desirable to be able to asses and tune adaptation along different directions

Tuning adaptation:
Apply a decomposition to A where AS

p is indices
only along the p axis and AT

p includes mixed in-
dices.
Define: (• = p or u, direction of interest)(
ηS•
)2 .

=
∑

l∈AS•
ε(l)2

(
ηT•
)2 .

=
∑

l∈AT•
ε(l)2

For simplicity, set η• to be a combination of ηS•
and ηT•.
Adapt until either of the following is met

1: ηp ≤ Tolp and ηu ≤ Tolu
2: η ≤ Tol
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If the ηp or ηu fall below the respective tolerance, halt adaptation in one of two ways:

T1: Do not allow further refinement beyond
the highest level reached in the
converged direction but allow for
additional mixed terms.

T2: Do not admit any forward neighbors in
the converged direction, and
consequently restrict the inclusion of
many mixed terms.
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Monte Carlo Error Estimate

For model F and surrogate (PCE) F̃ , set χ(ξ)
.
= F (ξ)− F̃ (ξ) and define

a posteriori error ζ2 =
E{χ2}
E{F 2} and for each space

(
ζS•
)2

=
E
{
E {χ|ξ•}2

}
E {F 2}

⇒ V {χ} Sχ• + E {χ}2

E {F 2}
,

(
ζT•
)2

=
V {χ} Tχ• + E {χ}2

E {F 2}
where Sχ• and Tχ• are the first and total sensitivity indices of χ, E and V denote the
expectation and variance, respectively
Let ζ• be a combination of ζS• and ζT• . Estimate quantities with Monte-Carlo sampling.
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Low-Dimensional Test Problem

Consider a simple test problem with a single
design variable and stochastic parameter:

F (p,u) =

(
1 +

1/3

2p + u + 7/2

)
× exp

[
−
(
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log10 |ε(l)| ∀ l ∈ L for
the different methods:
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a posteriori ζ values:
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Nested consistently reduced error in inner space. Both product-space methods
out-performed the nested on realization count efficiency. Untuned product-space
adaptation reduced error but required more total realizations and had the same
monomials in u.

Large Scale Demonstration: Methane Combustion

Consider a shock-tube methane combustion experiment with 22-stochastic parameters
and 3 design variables. Measure peak electron concentration

Termination indicator, η
and directional ηp and
ηu for the product-space
adaptation:
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Nested adaption had good error properties but extremely expensive. In this example,
the guided adaptation had little affect on the adaptivity but provided improved
termination control. Note: small MC sample sized caused artifacts for some measures
of ζp and ζu

Conclusions

• Nested adaptation provides good error control but the tensor-product nature of
p− u coupling makes it expensive

• Tuned product-space adaptation is a simple modification to aPSP providing
enhanced adaptivity and termination criteria
• Prevents adaptivity from ignoring important but low-variance directions
• Allows for a sparse coupling of p and u dependence
• Easily adaptable to more than two groupings of directions
• Different directional termination methods provide greater control of mixed terms

• Directional η values are also a useful diagnostic quantity
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