Mission of the LCF

What is the Leadership Computing Facility (LCF)?

We have increased our system capability by 10,000 times since our founding in 2004

- Strong partnerships with computer designers. LCF users employ large portions of the machine for large fractions of time.
- We accomplished this through strong partnerships with our users to scale codes and algorithms.

Demand for INCITE resources exceeds supply with more time requested than available – Number of projects remains flat

ORNL 2014-G00838/jbs

SciDAC on DOE's Leadership Computing Facility

- Collaborative DOE Office of Science program at ORNL and ANL.
- Mission: Provide the computational and data resources required to solve the most challenging problems.
- 2-centers/2-architectures to address diverse and growing computational needs of the scientific community.
- Highly competitive user allocation programs (INCITE, ALCC).
- Projects receive 10x to 100x more resource than at other generally available centers.
- LCF centers partner with users to enable science & engineering breakthroughs (Liaisons, Catalysts).

Three primary ways for access to LCF

Science Achievements (including focus on SciDAC) on LCF

Project		Science Objective		
Velocity Magnitude 1000 2000 3000 1.733848 3344.522	Exploring the Nature of the Lightest Massive Particles in the Universe Salman Habib Argonne National Laboratory	 To understand the distribution of mass in the unergy, dark matter, and other areas of astrophy To create synthetic cosmological surveys that can observational data. To simulate cosmic structure using a highly scala multi-algorithmic structure. 		
<image/>	Lattice QCD: Spectrum and Properties of Exotic Mesons Paul Mackenzie Fermilab	 Establish theoretical capability to predict the ex Predict new discoveries from experiments at the Beam Accelerator Facility at JLab following the Predict the spectrum of exotic mesons generate the gluonic field binding the quarks. 		
	Nuclear Physics: The Limits of the Nuclear Landscape James Vary <i>Iowa State University</i>	 Identify how protons and neutrons can be bound the nuclear drip lines denoting the end of nucle Uses ranging from potential cancer treatments the understanding of superconductivity. 		
<image/>	The Bleeding 'Edge' of Fusion CS Chang <i>Princeton Plasma Physics Laboratory</i>	 Fusion efficiency of ITER to be determined by ed First-principles simulation of edge physics on Tit Predictions validated. New insight gained throu Success with DIII-D plasma simulations. 		

SciDAC-Affiliated Projects at LCF:

2013					
Title	PI Name	Institution	OLCF Hrs (millions)	ALCF Hrs (millions)	Title
Computing the Dark Universe	Salman Habib	Argonne	0	40	Lattice QCD
High-Fidelity Simulation of Tokamak Edge Plasma Transport	C.S. Chang	PPPL	100	0	High-Fidelity Simula Cosmological Simul
Lattice QCD	Paul Mackenzie	Fermi	140	430	Nuclear Structure an High-Resolution Co
Nuclear Structure and Nuclear Reactions	James Vary	lowa State U	74	81	Performance Evalua
Performance Evaluation and Analysis Consortium (PEAC) End Station	Lenny Oliker	LBNL	45	40	QMC Simulations D Precision Many-Bod
Precision Many-Body Quantum Simulations of Functionalized Structures	Shiwei Zhang	W&M	27	0	Assembling and sus
Understanding Helium Plasma Mediated Tungsten Surface Response that Controls Plasma Facing Component Performance and Lifetime	Brian Wirth	Oak Ridge	5	7.5	Ion Solvation, Cataly Initio Study of Liqui
High-Resolution Coupled Climate Simulations on Titan with GPU Acceleration	Mark Taylor	Sandia	64	0	The Spectrum and F
Projections of Ice Sheet Evolution	Stephen		26	0	Cosmic Frontier Cor
	Price	TOTAL	458	598	Understanding Heli predict Fusion Plasr
Acknowledgements: LCF Vendor Partners: IBM, Crav, AMD, NVIDIA, etc.					Hypernuclei and Ch

LCF Vendor Partners: IBM, Cray, AMD, NVIDIA, etc. LCF Users: DOE ASCR Leadership Computing Program

> **Contact:** Jack Wells, wellsjc@ornl.gov Richard Coffey, richardc@alcf.anl.gov

' e	Science Result
niverse, relevant to dark ysics research. an support analysis of lable application with a	 Precision study of effects of massive neutrinos on cosmological structure formation. Synthetic sky catalog with the latest cosmological parameters as determined by Planck and other observational surveys.
kistence of new particles. e Continuous Electron 12GeV upgrade. ed by the excitation of	 Unprecedented determination of the ρ meson resonance using LQCD. Demonstrated the methodology for determining resonance properties, enabling future calculations of exotic mesons.
nd within a nucleus and ear binding. to a better	 Identify how many protons and neutrons can be bound within a nucleus. Identify the nuclear drip lines that denote the end of nuclear binding. Project represents at step toward "designer nuclei," with uses ranging from potential cancer treatments to a better understanding of superconductivity.
dge plasma transport. tan. Igh analysis of results.	 Simulated nonlinear coherent turbulence structures. Identified the momentum source and its inward transport process and predicted the divertor heat load distribution. All for the first time in first-principles calculations of a tokamak reactor.

20	1	4

	PIName	Institution	OLCF Hrs (millions)	ALCF Hrs (millions)
	Paul Mackenzie	Fermi	100	240
nulation of Tokamak Edge Plasma Transport	C.S. Chang	PPPL	129	100
mulations for Large-scale Sky Surveys	Salman Habib	Argonne	100	100
re and Nuclear Reactions	James Vary	Iowa State U	104	100
Coupled Climate Simulations on Titan with GPU Acceleration	Mark Taylor	Sandia	100	0
aluation and Analysis Consortium (PEAC) End Station	Lenny Oliker	LBNL	45	30
ns DataBase for predictive modeling and theory	David Ceperely	UIUC	100	100
Body Quantum Simulations of Functionalized Structures	Shiwei Zhang	W&M	30	0
sustaining the acid mantle of the human skin barrier	Michael Klein	Temple U	75	0
rons in Photoactive and Superconducting Materials	Lucas Wagner	UIUC	0	60
atalytic Interfaces, and Extreme Aqueous Environments: An Ab iquid Water	Robert DiStasio	Princeton U	0	350
nd Properties of Exotic Mesons in Quantum Chromodynamics	Robert Edwards	Jefferson Lab	250	0
Computational End-Station	Salman Habib	Argonne	0	100
Helium Plasma Mediated Tungsten Surface Response to better lasma Facing Component Performance in	Brian Wirth	U Tennessee	30	66
d Charmed Nuclei	Martin Savage	U Washington	65	0
		TOTAL	1128	1246