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•  Non-intrusive, sampling-based, UQ methods have general utility 

o Black box handling of computational codes 

o Independent embarrassingly parallel runs 

•  Polynomial Chaos (PC) non-intrusive Galerkin methods 
o Quadrature-based numerical evaluation of projection integrals 

o Each quadrature point is a computational sample 

•  High-dimensional setting (e.g. large # uncertain inputs) 

o Care is required to minimize # requisite samples 
  Efficient sparse quadrature methods 

Sparse Quadrature in PC UQ 

Relevance 

Adaptive Sparse Quadrature and Collocation 

•  Avoid dense tensor product grid sampling 

•  Target sparse optimal set of points 

•  Use Leja sequences to greedily generate 1D 
points that are approximately optimal for 
weighted interpolation 
o Non-isotropic, Adaptive 

Relevance Relevance 

•  Many applications involve uncertain inputs/outputs that have 
spatial or time dependence 

•  Such an uncertain function, represented probabilistically, is a 
random field/process.  

o It is a random variable at each space/time location 

o Generally with some correlation structure in space/time 

o An infinite-dimensional object 
•  The Karhunen Loeve expansion (KLE) provides an optimal 

representation of random fields, employing a (small) number of 
eigenmodes of its covariance function  

Fault-Tolerant Quadrature 

•  Quadrature relies on availability of all samples 

•  Investigate alternative integration methods  
   with missing quadrature evaluations 

o Quadrature reweighting  
o Polynomial regression 
o Gaussian process estimate of missing values 

•  Missing a single quadrature point reduces the quadrature 
formula accuracy (polynomial exactness) by a factor of two. 

GP regression estimates the 
missing values with a similar 
accuracy as re-weighting, but also 
provides error-bars on the final 
answer 

Evaluation of  quantum chemistry integrals 

•  Developing sparse quadrature techniques 
for integration arising in 2nd-order  

   many-body perturbation theory (MP2) 

•  Enhancing sparse quadrature with 
spherical transformations 

•  BES partnership initiated with UIUC 

•  We wish to quantify uncertainty in predictions 
of sea level rise from ice-sheet melting. 

•  Friction between an ice sheet and the land 
mass is the first order uncertainty effecting 
predictions of sea level rise. 

•  The friction is a random field which can be 
represented using a KLE. 

•  Current study involves inferring friction B(x,y) 
from field measurements of surface velocities 

•  BER PISCEES partnership with UT 

•  Many physical models have a large # of uncertain inputs 
•  UQ in this high-dimensional setting is a major computational 

challenge – too many samples and/or large # PC modes 
•  Yet physical models typically exhibit sparsity 

o A small number of inputs are important 
•  Seek sparse PC representation on input space 

o Small number of dominant terms 

•  Compressed sensing (CS) is useful for discovering sparsity 
in high dimensional models 

•  Identify terms that contribute most to model output variation 
•  Ideal for when data is limited 

Basis selection 

•  Cardinality of total degree basis grows factorially with the 
number of uncertain inputs. 

•  Even for lower dimensional problems redundant basis terms 
can degrade accuracy 

•  To reduce redundancy and improve accuracy the PCE 
truncation can be chosen adaptively. 
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Sparsity in Atmospheric Modeling 

Random Fields Compressed Sensing 

•  We perform a KLE/PCA analysis of 
NOAA’s sea surface temperature data 
for the past three decades.  

•  The figure to the right shows the 
magnitude of the first KL mode for the 
Fall months from 2000 – 2009.  

•  This data set has ~106 dimensions 

•  Uncertain KLE given limited # of 
samples; Bayesian framework 

•  Compute principal directions of 
maximum variance 

•  Produce error bounds on the 
principal modes themselves 

•  The figure shows PCA modes in 
solid colored lines overlaid with 
the uncertainty: shaded regions.  

•  QOI : time averaged profile of 
ozone concentration 

•  95 dimensional input space 
•  Adaptive: start with first order 

terms, successively adding  
   higher order terms 
•  2nd-order approximation 

o 25-150 terms 
o Full 2nd-order: ~4500 terms 

•  BER ACES4GCM partnership  

Ice Sheet Basal Boundary Layer 

Sea Surface Temperature 

Bayesian PCA 

Sensitivity indices for ozone at six 
different altitudes. Each color 
represents a different input 
parameter: reactants e.g. CO 

More samples, less uncertainty 


