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Antarctica and climate change

The Western Antarctic Ice Sheet has recently shown
growing mass loss along the Amundsen coast

Western Antarctic Ice Sheet

[Rignot et al. 2011]

Pine Island Glacier

[NASA]

Vast uncertainty in ice-ocean dynamics

Figure: Temperature profile under Pine Island Glacier, Antarctica [Jacobs
et al.]

I How readily is heat absorbed by the ice?
I How much mixing occurs near the ice-ocean interface?
I Ultimately, can we predict melt rates and the stability of

the glacier?

Forward model of ice-ocean coupling

I MIT General Circulation
Model, configured for
Pine Island

I Realistic geometry on
coarse scale (4 km × 4
km × 20 m) or fine scale
(1 km × 1 km × 20 m)
models

I Several input parameters
are unknown

Constructing an inference problem
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I Representative locations for temperature and salinity
observations

Bayesian inference illustration

I Bayesian inference
expresses our prior beliefs
over parameters θ ∈ Rn,
with a probability density,

p(θ),

and constructs a posterior
probability density,

p(θ|d) ∝ L(θ|d, f(θ))p(θ)

expressing our beliefs after
comparing the data
d ∈ Rd , to the
computationally expensive
forward model f(θ).

I Well suited to limited
data and complex models
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Markov chain Monte Carlo (MCMC)

Posterior contours

Proposal contours

MCMC samples

I Significant literature discusses proposals that “mix”
quickly, i.e., that generate nearly independent samples

I Evaluates forward model N times
I Run-time can be dominated by cost of f
I Standard MCMC links cost of understanding p(θ|d) and

f(θ)

MCMC with Local Approximations

Given X0, initialize S0, then simulate chain {Xt}t≤N with
kernel:

MH Kernel Kt(x , ·)
1. Given Xt, draw qt ∼ Q(Xt, ·) from kernel Q with

(symmetric) translation invariant density q(x , ·)
2. Compute acceptance ratio

α = min

(
1,
L(θ|d, f̃t(qt))p(qt)

L(θ|d, f̃t(Xt))p(Xt)

)
3. As needed, select new samples near qt or Xt, yielding
St ⊆ St+1. Refine f̃t → f̃t+1.

4. Draw u ∼ U(0, 1). If u < α, let Xt+1 = qt, otherwise
Xt+1 = Xt.

Local approximations

I To compute f̃(θ), construct a model over ball BR(θ)
I Use samples θi ∈ S at distance r = ‖θ − θi‖ < R
I Approximation converges locally under loose conditions

[Cleveland]
I For example, quadratic approximations over BR(θ) [Conn

et al.]:
‖f −QRf‖ ≤ ‖f‖κλR3

Local approximation illustration

Early times Late times

Models are refined using new points chosen when model
quality appears poor

Ergodicity and exactness of approximate samplers

Assume the log-posterior is approximated with local
quadratic models and θ ∈ X ⊆ Rn for compact X , or
p(θ|d) obeys a Gaussian envelope:

lim
r→∞

sup
|θ|=r

| log(p(θ|d))− log(p∞(θ))| = 0

for some quadratic form log(p∞) with negative definite
coefficient matrix.

Then under standard regularity assumptions for
geometrically ergodic kernel K∞ and posterior p(θ|d), the
chain Xt is ergodic and asymptotically samples from the
exact posterior:

lim
t→∞
‖P(Xt)− p(θ|d)‖TV = 0

Example: Elliptic permeability inversion

Infer parameters of k given observations of u in the PDE:

∇s · (k(s, θ)∇su(s, θ)) = 0,
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Cost of chains
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Prior and likelihood selection

I Priors are log-normal with expert-chosen mean and width
I Likelihoods are i.i.d. Gaussian with variance suggested by

in situ experimental data

Parameter Nominal value, µ′ Prior “width” σ′

Drag coefficients 1.5E-3 1.5E-3
Heat & Salt transfer 1.0E-4 0.5E-4
Prandtl Number 13.8 1.
Schmidt Number 2432. 200.
Horizontal Diffusion 5.0E-5 5.0E-5
ZetaN 5.2E-2 0.5E-3

Temperature – 0.04
Salinity – 0.1

Computational details and results

I Compute synthetic data using the fine scale model, try to
infer them using the coarse scale

I Constructed 30 parallel chains with shared evaluations
I Chains run for approximately two weeks
I Results shown after burn-in is removed

Inference cost summary

Samples Model runs Savings

Drill and surface 225,000 53,000 ≥ 4.2x

Surface only 450,000 52,000 ≥ 8.6x

Prior and posterior marginals

Drag
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Contributions

I Introduce a novel framework for using local
approximations within MCMC; prove that the
framework produces asymptotically exact samples.

I Demonstrate strong numerical performance on canonical
inference problems.

I Construct a realistic, synthetic inference problem for
ice-ocean coupling near Pine Island Glacier.

I Apply local approximation methods to reduce
computational cost of inference in the Pine Island Glacier
setting.
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