

to send high –intensity neutrino beams to the Sanford Lab.

ComPASS includes national labs, university groups and Industry

Advanced Computation for High Intensity Accelerators

PI: P. Spentzouris¹ – Co-PIs: J. Cary², W. Mori³, C. Ng⁴, E. Ng⁵, C. Simmons⁷, J.-L. Vay⁵, S. Wild⁶ ¹Fermilab, ²Tech-X, ³UCLA, ⁴SLAC, ⁵LBNL, ⁶ANL, ⁷UT Austin

METHODS & TOOLS

Explicit vectorization of Synergia single-particle routines leads to a large performance enhancement across architectures

A trapped monopole mode (2.413 GHz) in Fermilab PIP2 650 MHz cryomodule

A scalable hybrid linear solver PDSLin () LBNL/FastMATH with improved memory usage compared with direct solver in **Omega3P** advances large-scale cavity mode calculation.

Solution time is substantially reduced. It took 3 min to calculate a mode frequency and its damping using 300 cores, 1.1 Tbytes of memory for a mesh with 14M degrees of freedom on NERSC Edison supercomputer.

GPU-enhanced Synergia achieves better overall performance with 4 GPUs than an entire Linux cluster

- optimizing new accelerator designs

The **ComPASS collaboration** has **extensive experience** in the modeling of high-intensity proton drivers. The focus is on FNAL PIP-II under SciDAC3.

84 bunches: instability Large-scale Synergia multi-bunch studies of the Fermilab Booster have revealed the precise source of a 14 bunches: instability wakefield-initiated instability

Multiphysics modeling with PIC/Plasma provides understanding of Dielectric Resonant Cavity rf Diagnostics of Electron Cloud Effect

71 steps/turn

APPLICATIONS

ComPASS tools provide **unique capabilities** that are be used for:

understanding and mitigating beam losses for existing accelerators,

understanding interaction with structures and generated plasmas

Synergia multi-bunch simulations of slipstacking in the Fermilab Recycler are preparing for the higher intensities of PIP-II

Simulated spectrum showing side bands from frequency modulation, that are generated by harmonic modulation of electron cloud density (dielectric tensor)

Synergia-driven simulation efforts have determined the optimal ramping profile in the Fermilab Debuncher for Mu2e

7,100,000 steps *4,194,304 particles* 29,779,558,400,000 particle-steps 1,238,158,540,800,000 calls to "drift"

Simulations in support of the LHC Injector upgrades have lead to the largest-ever PIC beam dynamics simulations

