
Advanced compilation techniques, architectures and algorithms
for Nuclear Physics calculations

!
Frank T. Winter, Bálint Joó, Robert G. Edwards, David G. Richards (presenter), Jefferson Lab

fwinter@jlab.org, bjoo@jlab.org, edwards@jlab.org, dgr@jlab.org

Introduction: QDP-JIT/PTX
The current diversity in computing architectures makes Domain
Specific Language (DSL) approaches to constructing codes highly
attractive. Users can write code using DS constructs, and have the
DSL implementation ensure the best mapping onto the available
system. The success of this approach is demonstrated by the QDP-
JIT/PTX implementation of the QDP++ domain specific framework for
Lattice QCD. The Chroma application, built over the QDP-JIT/PTX
implementation is successfully accelerated on NVIDIA GPU based
systems. This, in combination with the QUDA optimized solver
library enabled Chroma on large scale GPU based systems such as
Titan at OLCF and Blue Waters at NCSA.

q

qq

q

q

q

t0 t

π

π

π

π

Correlation functions for Hadron Spectroscopy
calculations are computed from quark line diagrams.
Each quark line is a quark propagator and is the result
of solving the QCD Dirac Equation. Each configuration
requires O(1M) solutions of the Dirac Equation. This
motivates the use of optimized solver algorithms, such
as recently developed Algebraic Multi-Grid Solvers

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

32" 64" 128"

W
al
l$c
lo
ck
$(
m
e$
(s
)$$

XK$Nodes$

light"quark,"MG,"CPU,"16"cores/node"

light"quark,"BiCGStab,"GPU+1"core/node"

strange"quark,"BiCGStab,"GPU+1"core/node"

The Dirac equation is solved on the GPUs using the QUDA solver library
integrated with the Chroma code. The Algebraic Multi-Grid (AMG) solver for
CPUs from the QDPQOP library (Osborn) has also been integrated (S. D.
Cohen & B. Joo) with Chroma. As can be seen AMG matches and outscales
the performance of BiCGStab from QUDA for light quarks on the NCSA
Blue Waters system. A GPU version of the AMG solver is in development
and we will soon embark on an implementation for Xeon Phi

Xeon Phi and x86 Optimization
In the regular CPU + QUDA build QDP++
generates code for user expressions
using Expression Templates (ETs). The
C++ compiler cannot immediately
generate GPU code from ETs and hence
non-QUDA parts of the code run on the
CPU

Chroma

QDP++

Chroma QUDAQUDA

 QDP-JIT/PTX QDP-JIT
memory cache

Regular CPU + QUDA build QDP-JIT/PTX + QUDA build

In the QDP-JIT/PTX + QUDA build, the QDP++
expression templates generate code-generators,
which generate the GPU kernels at run-time. The
QDP-JIT/PTX implementation also contains a
cache to manage movement of data between
CPU & GPU. Changes to Chroma were minimal
and only to parts where it broke out of QDP++

The JIT approach
provides opportunities for
several performance
improvement, such as
auto-tuning of the JIT-ed
kernels and memory
layout transformations
when moving data
between the host and
GPU, e.g., to allow
coalesced access on
GPUs or vectorized
access on the host.

Speedup of an HMC trajectory on NCSA Blue Water, using data from F. Winter et. al.
IPDPS’14. Here we compare performance on GPU enabled XK nodes (1 NVIDIA K20X
GPU + 1 AMD Interlagos CPU), with Dual Socket XE nodes (2 AMD Interlagos Sockets).
Chroma + QDP-JIT/PTX is the clear winner

0 100 200 300 400 500 600 700 800 900
Nodes

1024

2048

4096

8192

16384

Tr
aj

ec
to

ry
 T

im
e

(s
ec

)

QDP-JIT + QUDA (GCR)
CPU + QUDA (GCR)
CPU only (XE Nodes)

V=403x256 sites, 2 + 1 flavors of Anisotropic Clover, m
π
 ~ 230 MeV, τ=0.2, 2:3:3 Nested Omelyan

The Future: QDP-JIT/LLVM
Rearchitecting QDP-JIT, to generate Internal Representation (IR)
for the LLVM compiler framework allows the JIT approach to be
harnessed also for non-GPU targets. Generating LLVM IR has
several advantages: efficient code generation for several targets
(x86, PowerPC, GPU), as well as advanced code transformations
and optimizations (fusion, fission, tiling, etc.)

Performance of ‘Native Chroma’
solvers on BlueGene/Q based
on Chroma built over QDP++
and QDP-JIT/LLVM respectively.
This result is preliminary, as the
LLVM approach does not yet
provide for vectorization.
Nonetheless even in this
preliminary result, the approach
outperforms the regular
expression template based
approach.

125.2%

150.1%

179.3%

244.1%

279.2%

126.1%

146.1%

166.3%

282.6%

315.7%

250.3%

273.9%

240.7%

287.1%

0 50 100 150 200 250 300 350

Sandy Bridge E5-2650 2.0 GHz, S=4

Sandy Bridge E5-2680 2.7 GHz, S=4

Ivy Bridge E5-2695 2.4 GHz, S=4

Xeon Phi 5110P, S=4

Xeon Phi 7120P, S=4

Sandy Bridge E5-2650 2.0 GHz, S=8

Sandy Bridge E5-2680 2.7 GHz, S=8

Ivy Bridge E5-2695 2.4 GHz, S=8

Xeon Phi 5110P, S=8

Xeon Phi 7120P, S=8

Xeon Phi 5110P, S=16

Xeon Phi 7120P, S=16

Tesla K20

Tesla K20X

S
in

gl
e

P
re

ci
si

on

GFLOPS

Clover'Dslash,'Single'Node,'Single'Precision'
32x32x32x64'La;ce'

Edison

Stampede

JLab

While the JIT approach is successful, there is always room for
highly optimized, hand tuned solvers. We have continued our
work on optimized solvers for Xeon Phi and Xeon (Joo et. al.
ISC’13). Our latest code features double precision and also 16
bit up-downconversion on Xeon Phi. Communication can now
be performed in all 4-dimensions.

QDP-JIT/LLVM shows promise on BlueGene/Q and we plan to
use it as the primary approach for efficient implementation of
QDP++ on the recently announced Xeon Phi Knights Landing
architecture, e.g. on the NERSC-8 Cori system.

 Multigrid Solvers

 Conclusion
We have shown progress both on applying advanced
compilation techniques to our code and exploiting
advanced algorithms and architectures. These efforts
enable our calculations on current systems and are
paving the way for the next generation of extreme
scale platforms

Performance of our Clover-
Dslash operator on a Xeon
Phi Knight’s Corner and
other Xeon CPUs as well
as NVIDIA Tesla GPUs in
single precision using 2-
row compression. Xeon
Phi is competitive with
GPUs. The performance
gap between a dual socket
Intel Xeon E5-2695 (Ivy
Bridge) and the NVIDIA
Tesla K20X is only a factor
of 1.6x.

A quark line diagram used in
computing 2π → 2π transition,
potentially via a resonance. The
orange propagators start and
end on the same time-slice and
hence need to be computed for
all (e.g. 256) time-slices. With
368 sources, 4 spins and 2
quark masses (light & strange)
one needs 753K solves per
configuration for the orange
propagators alone.

mailto:fwinter@jlab.org
mailto:bjoo@jlab.org
mailto:edwards@jlab.org?subject=
mailto:dgr@jlab.org

