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Introduction: QDP-JIT/PTX
The current diversity in computing architectures makes Domain 
Specific Language (DSL) approaches to constructing codes highly 
attractive. Users can write code using DS constructs, and have the 
DSL implementation ensure the best mapping onto the available 
system. The success of this approach is demonstrated by the QDP-
JIT/PTX implementation of the QDP++ domain specific framework for 
Lattice QCD. The Chroma application, built over the QDP-JIT/PTX 
implementation is successfully accelerated on NVIDIA GPU based 
systems. This, in combination with the QUDA optimized solver 
library enabled Chroma on large scale GPU based systems such as 
Titan at OLCF and Blue Waters at NCSA.
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Correlation functions for Hadron Spectroscopy 
calculations are computed from quark line diagrams. 
Each quark line is a quark propagator and is the result 
of solving the QCD Dirac Equation.  Each configuration 
requires O(1M) solutions of the Dirac Equation. This 
motivates the use of optimized solver algorithms, such 
as recently developed Algebraic Multi-Grid Solvers
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The Dirac equation is solved on the GPUs using the QUDA solver library 
integrated with the Chroma code. The Algebraic Multi-Grid (AMG) solver for 
CPUs from the QDPQOP library (Osborn) has also been integrated (S. D. 
Cohen & B. Joo) with Chroma. As can be seen AMG matches and outscales 
the performance of BiCGStab from QUDA for light quarks on the NCSA 
Blue Waters system. A GPU version of the AMG solver is in development 
and we will soon embark on an implementation for Xeon Phi

Xeon Phi and x86 Optimization
In the regular CPU + QUDA build QDP++ 
generates code for user expressions 
using Expression Templates (ETs). The 
C++ compiler cannot immediately 
generate GPU code from ETs and hence 
non-QUDA parts of the code run on the 
CPU

Chroma

QDP++

Chroma QUDAQUDA

 QDP-JIT/PTX QDP-JIT 
memory cache

Regular CPU + QUDA build QDP-JIT/PTX + QUDA build

In the QDP-JIT/PTX + QUDA build, the QDP++ 
expression templates generate code-generators, 
which generate the GPU kernels at run-time. The 
QDP-JIT/PTX implementation also contains a 
cache to manage movement of data between 
CPU & GPU. Changes to Chroma were minimal 
and only to parts where it broke out of QDP++

The JIT approach 
provides opportunities for 
several performance 
improvement, such as 
auto-tuning of the JIT-ed 
kernels and memory 
layout transformations 
when moving data 
between the host and 
GPU, e.g., to allow 
coalesced access on 
GPUs or vectorized 
access on the host.

Speedup of an HMC trajectory on NCSA Blue Water, using data from F. Winter et. al. 
IPDPS’14. Here we compare performance on GPU enabled XK nodes (1 NVIDIA K20X 
GPU + 1 AMD Interlagos CPU), with Dual Socket XE nodes (2 AMD Interlagos Sockets). 
Chroma + QDP-JIT/PTX is the clear winner

0 100 200 300 400 500 600 700 800 900
Nodes

1024

2048

4096

8192

16384

Tr
aj

ec
to

ry
 T

im
e 

(s
ec

)

QDP-JIT + QUDA (GCR)
CPU + QUDA (GCR)
CPU only (XE Nodes)

V=403x256 sites, 2 + 1 flavors of Anisotropic Clover, m
π
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The Future: QDP-JIT/LLVM
Rearchitecting QDP-JIT, to generate Internal Representation (IR) 
for the LLVM compiler framework allows the JIT approach to be 
harnessed also for non-GPU targets. Generating LLVM IR has 
several advantages: efficient code generation for several targets 
(x86, PowerPC, GPU), as well as advanced code transformations 
and optimizations (fusion, fission, tiling, etc.)

Performance of ‘Native Chroma’ 
solvers on BlueGene/Q based 
on Chroma built over QDP++ 
and QDP-JIT/LLVM respectively. 
This result is preliminary, as the 
LLVM approach does not yet 
provide for vectorization. 
Nonetheless even in this 
preliminary result, the approach 
outperforms the regular 
expression template based 
approach.
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While the JIT approach is successful, there is always room for 
highly optimized, hand tuned solvers. We have continued our 
work on optimized solvers for Xeon Phi and Xeon (Joo et. al. 
ISC’13). Our latest code features double precision and also 16 
bit up-downconversion on Xeon Phi. Communication can now 
be performed in all 4-dimensions.

QDP-JIT/LLVM shows promise on BlueGene/Q and we plan to 
use it as the primary approach for efficient implementation of 
QDP++ on the recently announced Xeon Phi Knights Landing 
architecture, e.g. on the NERSC-8 Cori system.

 Multigrid Solvers

 Conclusion
We have shown progress both on applying advanced 
compilation techniques to our code and exploiting 
advanced algorithms and architectures. These efforts 
enable our calculations on current systems and are 
paving the way for the next generation of extreme 
scale platforms 

Performance of our Clover-
Dslash operator on a Xeon 
Phi Knight’s Corner and 
other Xeon CPUs as well 
as NVIDIA Tesla GPUs in 
single precision using 2-
row compression. Xeon 
Phi is competitive with 
GPUs. The performance 
gap between a dual socket 
Intel Xeon E5-2695 (Ivy 
Bridge) and the NVIDIA 
Tesla K20X is only a factor 
of 1.6x.

A quark line diagram used in 
computing 2π → 2π transition, 
potentially via a resonance. The 
orange propagators start and 
end on the same time-slice and 
hence need to be computed for 
all (e.g. 256) time-slices. With 
368 sources, 4 spins and 2 
quark masses (light & strange) 
one needs 753K solves per 
configuration for the orange 
propagators alone.
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