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® Many Fermion Dynamics: Nuclear (MFDn) is
used to calculate the properties of light
atomic nuclei.

® The Model for Prediction Across Scales (MPAS) is
a modeling framework for climate simulations.
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® MPAS utilizes a fully unstructured mesh, which
allows more flexibility in the description of the
mesh locations.
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® Nominally, this requires an eigensolver like
Lanczos which requires applying the operator
repeatedly.
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® But it also has negative impact on performance
due to multiple factors such as unordered data
elements, irregular memory access patterns,
mesh partitioning and communication imbalance.
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® VIFDn forms the very large (half a billion
nonzeros per process) symmetric
configuration interaction matrix explicitly.
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