SUPER Performance Auto-Tuning and MPAS-Ocean Optimization

MFDn Application (NUCLEI)
- Many Fermion Dynamics: Nuclear (MFDn) is used to calculate the properties of light atomic nuclei.
- Nominally, this requires an eigensolver like Lanczos which requires applying the operator repeatedly.
- MFDn forms the very large (half a billion nonzeros per process) symmetric configuration interaction matrix explicitly.
- As such, repeated application of the operator is particularly bandwidth-intensive and time-consuming.
- Symmetry further complicates this as it necessitates high performance SpMV and SpMV_T (transpose)

LOBPCG
- LOBPCG is a block eigensolver that restructures computation into a series of Sparse Matrix-Dense Matrix Multiplications (SpMM) where the dense matrix is tall and skinny (500,000 x 16 per process).
- Once again, symmetric necessitates SpMM_T (transpose)
- The advantage (assuming comparable convergence) is that one can reduce the number of times the matrix must be read by a factor of m (the number of vectors in block). Ideally, this should result in a m-fold increase in performance.
- Unfortunately, naive implementations of SpMM and SpMM_T failed to deliver the expected performance.
- SUPER collaborated with FastMath to model, analyze, and optimize these operations.

Compressed Sparse Blocks (CSB)
- Using the CSB data format, we tiled each local matrix into BxB tiles.
- Through the use of CSB and tuning of B, we were able to improve performance by 1.5x for SpMM and 3x for SpMM_T.
- Unfortunately, performance seemed to saturate at m~12.
- We constructed a series of Roofline Models to capture the effects of limited L2 and L3 locality on finite L2, L3, and DRAM bandwidth.
- The result clearly shows when one can no longer maintain a working set of vector data in the L2 a transition from DRAM-limited to L3-limited performance

MPAS-Ocean Application
- The Model for Prediction Across Scales (MPAS) is a modeling framework for climate simulations.
- MPAS utilizes a fully unstructured mesh, which allows more flexibility in the description of the mesh locations.
- But it also has negative impact on performance due to multiple factors such as unordered data elements, irregular memory access patterns, mesh partitioning and communication imbalance.
- Regression analysis of scaling experiments shows scalability bottlenecks with runtime functions of the form $T_p = c_1 + c_2 \times (T_p/p)$, where c_2 is a large constant, thus limiting scalability; investigating the reasons for this behavior.

MPAS-Ocean Optimizations
1. To improve compiler-based vectorization of MPAS-Ocean, the data structures were rewritten utilizing hash tables. 10-15% performance improvement was achieved.
2. Data element reordering based on Space Filling Curves was done to improve on-node cache performance. Up to 20% reduction in overall application runtime was observed.
3. On-node threading using OpenMP was explored showing significant reduction in number of FLOP per core.
4. A benchmark for reorganization of halo-exchanges through data aggregation was written. Benchmark shows significant potential in communication performance improvement.
5. A new weighted graph partitioning scheme “Hindsight” was developed. About 10-15% reduction in overall runtime was observed.
6. A new weighted hypergraph-based and halo-aware partitioning scheme was developed. About 20% reduction in overall runtime was observed.

Autotuning Tool Integration
- Tools must support architectural changes and application requirements.
- Tools are extended in response to application tuning.

Example Extension: Sparse Matrices
GOAL: Extend compiler transformations and code generation to non-affine bounds and subscripts with index array. Compose with other transformations
- Performance comparison with manually-written CUSP library
 - Using autotuning, outperforms CUSP library
 - CSR Vector: parallelize by nonzero

Example Tool for MPAS
Performance Issue:
Significant structure indirection inside loop nests block/5mesh/iceellsOnEdgeArray/L,Edge
Solution: Replace with pointer buffers that point directly to array

Autotuning Experiments for MPAS
- **Conclusion:**
 - Partition on icell, but value unknown before partitioning

M. Hall, K. Huck, J. Hollingsworth, L. Oliker, A. Malony, S. Moore, A. Sarje, S. Shende, S. Song, S. Williams, P. Worley

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research