Transforming Vislt for Multicore / Manycore Architectures

Eric Brugger, Cameron Christensen, Jeremy Meredith, Dave Pugmire, Kenneth Moreland, Berk Geveci, Christopher Sewell

What is Vislt?

to handle big data.

- •Client / server architecture allows remote access to data
- •Run interactively or in batch via Python

Architecture

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC

The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

value(s)

What is our approach?

We will change Vislt to base its processing and rendering infrastructure on VTK-m. We will take an incremental approach using the existing multicore and manycore toolkits to gain experience with such toolkits and prepare ourselves for a quick transition once VTK-m is ready.

Integration overview

- There are three portions of Vislt that will be impacted by this transition. \bullet They include the database readers, the data processing filters and the rendering. All three of these use VTK.
- We are going to start with the data processing filters
 - This will give the most performance improvement
 - We will leave our database readers alone and continue to have them return VTK data sets
 - We will convert the various toolkit data sets to VTK data sets for rendering or saving results
- We are going to modify the filter infrastructure to work with any type of visualization and analysis toolkit
- We will start prototyping with the existing toolkits
- of Vislt to use VTK-m until we reach a point of diminishing returns
- We will then move on to prototyping the database readers and rendering • Once VTK-m is ready we will switch to VTK-m and convert more and more

Software infrastructure changes

- We are enhancing our avtDataRepresentation class to handle other dataset types
- We will modify all our filters to operate on avtDataRepresentations
- We will add into avtDataRepresentation the ability to convert between VTK datasets and toolkit datasets automatically • These are zero-copy in most situations
- We will then start to modify the filters to use the existing toolkits

An example mixed filter pipeline using EAVL

CUDA

Tesla

What is VTK-m?

VTK-m is a new visualization toolkit combining the strengths of the

VTK-m properties

Reduces the complexity of writing highly concurrent code

Has a device independent layer that lets it run on a variety of multicore and

Decompose algorithms into sections that can run a small section of data • The approach is essentially the same as presented by Baker and colleagues, functional mapping [Baker, et al. 2010]

• Can represent many structure types but with consistent access

VTK-m components

LLNL-POST-657401

Office of

Science

