
The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

Transforming VisIt for Multicore / Manycore Architectures
Eric Brugger, Cameron Christensen, Jeremy Meredith, Dave Pugmire, Kenneth Moreland, Berk Geveci, Christopher Sewell

What is VisIt?

Major use cases

Visual
Debugging

Presentations

Data Exploration

Quantitative Analysis

= ?

Comparative Analysis

Key big data features
•Data typically post processed from parallel file system
•In situ capability targeted at simulation steering
•Client / server architecture allows remote access to data
•Run interactively or in batch via Python

Files or
simulation

Analysis
pipeline

Data
Plugin

Data

Data

Data

Parallel data
flow network

Analysis
pipeline

Data
Plugin

Analysis
pipeline

Data
Plugin Total volume

= 15.337

Parallel
reduction

Image or
curve or
value(s)

Architecture

VisIt is a distributed, parallel visualization and analysis tool designed
to handle big data.

What is VTK-m?

VTK-m

PISTON

EAVL
DAX

What is our approach?
VTK-m is a new visualization toolkit combining the strengths of the
existing toolkits Dax, EAVL and PISTON.

• Targets multi and many core architectures
• Reduces the complexity of writing highly concurrent code
• Has a device independent layer that lets it run on a variety of multicore and

manycore architectures
• Decompose algorithms into sections that can run a small section of data

• The approach is essentially the same as presented by Baker and
colleagues, functional mapping [Baker, et al. 2010]

• New powerful, flexible data structures
• Can represent many structure types but with consistent access

that works on all devices

VTK-m components

Develop

Use

Research

EAVL

Data Model

Dax

Execution

PISTON Dax

Data Parallel Algorithms

PISTON Dax

Arrays

EAVL

PISTON EAVL

Filters

EAVL Dax

Worklets

Tesla x86_64 Xeon Phi

CUDA OpenMP TBB OpenACC

We will change VisIt to base its processing and rendering infrastructure
on VTK-m. We will take an incremental approach using the existing
multicore and manycore toolkits to gain experience with such toolkits
and prepare ourselves for a quick transition once VTK-m is ready.

• There are three portions of VisIt that will be impacted by this transition.
They include the database readers, the data processing filters and the
rendering. All three of these use VTK.

• We are going to start with the data processing filters
• This will give the most performance improvement
• We will leave our database readers alone and continue to have

them return VTK data sets
• We will convert the various toolkit data sets to VTK data sets for

rendering or saving results
• We are going to modify the filter infrastructure to work with any type of

visualization and analysis toolkit
• We will start prototyping with the existing toolkits
• We will then move on to prototyping the database readers and rendering
• Once VTK-m is ready we will switch to VTK-m and convert more and more

of VisIt to use VTK-m until we reach a point of diminishing returns

Integration overview

Software infrastructure changes
• We are enhancing our avtDataRepresentation class to handle other

dataset types
• We will modify all our filters to operate on avtDataRepresentations
• We will add into avtDataRepresentation the ability to convert between VTK

datasets and toolkit datasets automatically
• These are zero-copy in most situations

• We will then start to modify the filters to use the existing toolkits

An example mixed filter pipeline using EAVL

VTK-m properties

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC LLNL-POST-657401

avtDatabase avtIsosurface
Filter

vtkDataSet

avtSlice
Filter

eavlDataSet

avtMapper

eavlDataSet

EAVL Filter EAVL/VTK Filter

GetDataEAVL();*
// Perform operation
// using EAVL

if (DataType() == VTK)
 GetDataVTK();
 DoSliceVTK();
else if (DataType() == EAVL)
 GetDataEAVL();
 DoSliceEAVL(); *Converts VTK to EAVL

*Converts EAVL to VTK

GetDataVTK();*

	Slide Number 1

