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What is VisIt? 
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Key big data features 
•Data typically post processed from parallel file system 
•In situ capability targeted at simulation steering 
•Client / server architecture allows remote access to data 
•Run interactively or in batch via Python 
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Architecture 

VisIt is a distributed, parallel visualization and analysis tool designed 
to handle big data. 

What is VTK-m? 
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What is our approach? 
VTK-m is a new visualization toolkit combining the strengths of the 
existing toolkits Dax, EAVL and PISTON. 

• Targets multi and many core architectures 
• Reduces the complexity of writing highly concurrent code 
• Has a device independent layer that lets it run on a variety of multicore and 

manycore architectures 
• Decompose algorithms into sections that can run a small section of data 

• The approach is essentially the same as presented by Baker and 
colleagues, functional mapping [Baker, et al. 2010] 

• New powerful, flexible data structures 
• Can represent many structure types but with consistent access 

that works on all devices 

VTK-m components 
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We will change VisIt to base its processing and rendering infrastructure 
on VTK-m. We will take an incremental approach using the existing 
multicore and manycore toolkits to gain experience with such toolkits 
and prepare ourselves for a quick transition once VTK-m is ready. 

• There are three portions of VisIt that will be impacted by this transition. 
They include the database readers, the data processing filters and the 
rendering. All three of these use VTK. 

• We are going to start with the data processing filters 
• This will give the most performance improvement 
• We will leave our database readers alone and continue to have 

them return VTK data sets 
• We will convert the various toolkit data sets to VTK data sets for 

rendering or saving results 
• We are going to modify the filter infrastructure to work with any type of 

visualization and analysis toolkit 
• We will start prototyping with the existing toolkits 
• We will then move on to prototyping the database readers and rendering 
• Once VTK-m is ready we will switch to VTK-m and convert more and more 

of VisIt to use VTK-m until we reach a point of diminishing returns 

Integration overview 

Software infrastructure changes 
• We are enhancing our avtDataRepresentation class to handle other 

dataset types 
• We will modify all our filters to operate on avtDataRepresentations 
• We will add into avtDataRepresentation the ability to convert between VTK 

datasets and toolkit datasets automatically 
• These are zero-copy in most situations 

• We will then start to modify the filters to use the existing toolkits 

An example mixed filter pipeline using EAVL 

VTK-m properties 
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GetDataEAVL();* 
// Perform operation 
// using EAVL 

if (DataType() == VTK) 
    GetDataVTK(); 
    DoSliceVTK(); 
else if (DataType() == EAVL) 
    GetDataEAVL(); 
    DoSliceEAVL(); *Converts VTK to EAVL 

*Converts EAVL to VTK 

GetDataVTK();* 
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