

FASTMath Team Members: Carol S. Woodward (LLNL), Daniel R. Reynolds (SMU), Andy Salinger (SNL)

FASTMath is developing next-generation nonlinear solvers and time integrators within robust library frameworks, and working with applications to integrate these technologies within scientific codes.

Overview

As scientific models improve in physical fidelity, simulations increasingly couple large-scale, stiff and temporally disparate interacting processes. FASTMath efforts have therefore focused next-generation solvers for challenging multi-physics and multi-ra problems:

- New solver libraries for stable and accurate split time integrati
- New nonlinear solvers for simplified prototyping and increased robustness
- Solvers including sensitivity information for enhanced uncertai quantification
- Enhancements to support state-of-the-art architectures
- Collaboration with simulation scientists to incorporate new technologies within application codes

Adaptive Implicit/Explicit Time Integrators

To better capture the multi-rate and multi-physics nature of scien applications, we have developed a highly flexible ImEx time integration solver, ARKode:

- Single-step, adaptive, additive Runge-Kutta methods
- Explicit, implicit or mixed implicit/explicit options
- Stable and high-order-accurate (Δt^3 to Δt^5)
- Interfaces in C, C++, Fortran
- Designed for space-time adaptivity:
 - Built-in adaptive temporal error control; user-modifiable
 - Supports adaptive problem resizing between time steps
 - Native support for multiple discretization types via non-ider mass matrix

$$M\dot{y} = f_E(t, y) + f_I(t, y),$$

Leverages SUNDIALS' wide variety of implicit solver algorithms:

- Nonlinear: Modified Newton, Inexact Newton, Fixed-point, Anderson-accelerated Fixed-point
- Linear:
 - Direct: Dense, Band, Sparse
 - Preconditioned Krylov: GMRes, FGMRes, BiCGStab, TFQMR

FASTMath Nonlinear and ODE Solver Technologies

 To better handle nonlinear problems with reduced differentiability, or arising within time-adaptive implicit simulations, we have developed robust Anderson-accelerated fixed-point solvers: Jacobian-free methods enable fast prototyping of implicit application codes Robust fixed-point iteration is accelerated using Krylov subspace techniques (a.k.a. "nonlinear GMRES") 	An adjoint-based gradient capability is being developed in the Albany application code. This is motivated by inversion and UQ milestones of the PISCEES Ice Sheet application, but is being
 Implemented in SUNDIALS (KINSOL, ARKode) and Trilinos (NOX) 	written as a general purpose capability. This capability makes use of automatic differentiation, nonlinear and linear solvers, $\frac{dg}{dt} = \frac{\partial g}{\partial t}^T \frac{\partial f}{\partial t}^{-1} \frac{\partial f}{\partial t} + \frac{\partial g}{\partial t}$
Architecture-Aware Enhancements	from the Trilinos suite. $ap \partial x \partial x \partial p \partial p$
 Incorporating Threading within SUNDIALS: New OpenMP and Pthreads vector kernels for threaded solves Interface with SuperLU_MT for threaded linear solvers, enabling simplified construction of hybrid MPI+thread preconditioners 	Time Integration of Coupled Climate Physics We are investigating time integration
Trilinos/NOX refactored for new solver stack: updated interfaces to allow for global ordinals above 32-bit limit.	 and nonlinear solution strategies within atmospheric physics Physics effects are operator split Order of application can change solution
 Implicit Simulations of Dislocation Dynamics The ParaDiS code performs large-scale simulations of dislocation dynamics models of strain-hardening within a crystal lattice Simulations begin with a small number of segments, which multiply, collide, join and separate, resulting in rapid configuration changes throughout a simulation. We incorporated the SUNDIALS KINSOL and ARKode solvers for 	 We are developing an implicit reference solution to help measure error Kinematic driver framework full CAM microphysics but idealized fluid motions Assessing time step convergence Applying an explicit prediction <i>Collaboration with P. Caldwell (LLNL)</i>
 faster nonlinear solvers and adaptive/higher-order time integrators: Accelerated fixed point (AA) in KINSOL and 3rd order integrator from ARKode 	Future Plans
 heterefated fixed point (viv) in knool and 3° order integration normaticed showed significant speedups over original solver on 16 cores w/ BCC lattice: Early time: 40% with AA, 30% with 3rd order Late time: 60% with AA, 70% with 3rd order New solvers gave speedups and robustness for large array of strains Developed hybrid MPI/OpenMP vector kernels; tested AA 35% speedup on 4,096 cores of LLNL Vulcan machine 12% speedup on 262,000 cores of LLNL Sequoia machine 	 Simplified interaction between solver libraries: We are constructing interfaces between SUNDIALS' solvers and both HYPRE and PETSc for scalable preconditioning. Continued development of solvers for LCF architectures: Investigation of communication-avoiding techniques within SUNDIALS solvers, for increased performance at large scales. Development of MPI+Thread vector kernels for hybrid solvers. Working to derive/develop new stable and high-order-accurate methods for time-subcycled multiphysics applications.
Collaboration with T. Arsenlis (LLNL), S. Aubry (LLNL), G. Hommes (LLNL), K. Mohror (LLNL), and D. Gardner (SMU & LLNL) More Information: http://www.factmath.ccidac	org or contact Lori Diachin LLNI diachin?@llnl.gov. 025.422

WISCONSIN

ک ر