The magnetic moment of the muon

\[\vec{\mu} + \text{JPsi Mcore-hr} \]

at BNL

Work on \(g-2 \) done in collaboration with

Collaborators

Christopher Aubin (Fordham U)
Saumitra Chowdhury (UConn)
Maarten Golterman (FSU)
Massashi Hayakawa (Nagoya)
Santiago Peris (Barcelona)
Taku Izubuchi (BNL/RCBC)
Christoph Lehner (BNL)

RBC/UKQCD Collaboration
Norikazu Yamada (KEK)
Norman Christ (Columbia)
Luchang Jin (Columbia)

The magnetic moment of the muon

\[V(\vec{\mu}) = -\vec{\mu} \cdot B \cdot \vec{\mu} \]

The magnetic moment \(\vec{\mu} \) is proportional to its spin \((c = h = 1) \)

\[\vec{\mu} = g \left(\frac{e}{2m} \right) S \]

The Landé \(g \)-factor is predicted from the free Dirac eq. to be

\[g = 2 \]

for elementary spin-1/2 fermion

The magnetic moment of the muon

In interacting quantum (field) theory \(g \) gets corrections

\[g - \frac{2}{3} = \alpha \]

the anomalous magnetic moment, or anomaly

The magnetic moment of the muon

Compute corrections in pert. theory in QED coupling constant

\[\alpha = \frac{e^2}{4\pi} = \frac{1}{137} + \ldots \]

The magnetic moment of the muon

New experiments + new theory = (?) new physics

Muon anomaly \(\alpha_g \) provides the most important test of the SM

\[\alpha_g(\text{Expt}) - \alpha_g(\text{SM}) = 287(63)[51] \times (10^{-11}) \]

or \(\sim 3.6 \sigma \)

\[249(87) \times (10^{-11}) \]

or \(\sim 2.9 \sigma \)

Big discrepancy! (New Physics \(\sim 2 \times \) Electroweak)

Theory must improve too! Hadronic (QCD) contributions dominate theory error

Lattice QCD calculations crucial

The hadronic light-by-light amplitude

Model estimates: \((10 - 12) \times 10^{-10} \) with a 25-40% uncertainty (difficult to quantify)

Lattice calculation: model independent, approximations (non-zero \(\alpha \), finite \(V \), ...) systematically improvable

Compute directly on lattice, using QCD and QED

Dominated by quark propagators, inverse of large, sparse matrix. Use conjugate gradient (CG).

All Mode Averaging (AMA)

\[f(x) \]

accuracy control:

- low mode part: \# of eig-mode
- mid-high mode: degree of poly

Speedup and memory requirements for AMA

HLLBL calculation: RBC/UKQCD 2+1f DWF ensemble

\[m_\pi = 329 \text{ MeV} \]

\[(24^3 \times 64 / 2 \times 64) \times (2 \times 3 \times 4) \times 4 \times 400 \approx 272 \text{ GB} \]

Approximation: 400 low modes, 10^6 stop res. (exact: 10^-11)

Error completely dominated by approximation, \(N_g = 6^2 = 36 \) propagators, 4 exact propagators

No direct test, but similar nucleon calculation was \(\approx 10^5 \) less expensive

HLBL contribution from lattice QCD+QED using AMA

Stat. errors only, lowest non-trivial momentum

Several source/sink separations for muon

Checked in pure QED

\(m_\pi = 329 \text{ MeV} \)

Statistical error: \(\approx 2 \times \) QCD error

Significant excited state contamination

Model value/error is "Glasgow Consensus"

USQCD projects using AMA

FNAL Clusters (400 J-Psi Mcore-hours allocated in total)

\begin{tabular}{|c|c|}
 \hline
 PI & J-Psi Mcore-hr \\
 \hline
 Aubin & 32 \\
 Ishikawa & 26 \\
 Izubuchi & 11 \\
 Soni & 47 \\
 Syritsin & 8 \\
 Witzel & 134 \\
 \hline
\end{tabular}

ANL BG/ Q

Many groups now using AMA: BMWc, Ke-computer, Mainz, RBC-UKQCD, ...

Summary

- Muon anomalous magnetic moment is measured precisely in exp. (BNL E821)

- In potential disagreement with Standard Model

- Going to be measured even more precisely (FNAL E989, J-PARC E34) in ~ 2 years

- Theory error dominated by QCD corrections

- Lattice QCD calculations provide systematically improvable results with controlled errors

- Combination may lead to discovery of NEW PHYSICS