
Objectives 
•  Use RBT as preprocessing to avoid expensive pivoting in sparse LU or LDLT. 
•  RBT is easily scalable, as opposed to numerical pivoting. 

 

 
 
 
Recent Accomplishments 
•  RBT: B = UTAV, where U and V are recursive butterfly matrices.  
     B is guaranteed to be factorizable without pivoting. 
•  The increase of B’s factors size is modest for many matrices. 

•  Tested 90 sparse matrices, compared to SuperLU (GE with partial 
pivoting): 37 have smaller factor size, 30 have increase <= 2x, 23 have 
increase > 2x.   69 have <= 2 digits loss of solution accuracy. 

•  In the process of parallelization study in SuperLU_DIST. 

References 
•  M. Baboulin, X.S. Li and F.-H. Rouet, “Using Random Butterfly Transformations to avoid 

pivoting in sparse direct methods”, VECPAR 2014 Conference, June 30 – July 3, 2014. 

Objectives 
•  Develop a new class of sparse approximate factorization algorithms that 

exploit the data-sparseness (low-rankness) in matrix off-diagonal blocks. 
•  As direct solvers for PDEs with smooth kernels, BEMs, integral equations, or 

preconditioners for general problems. 
•  Use Hierarchically Semiseparable (HSS) representation (nested bases),  

achieves asymptotically lower complexity in both FLOPS and communication. 

 
 
 
 
 
 
 
 
Recent Accomplishments 
•  Randomized sampling in place of traditional RRQR for low-rank compression, 

which simplies extend-end in sparse MF, further reduces operation complexity. 
•  Shared-memory parallelizaion: use OpenMP task pragma to schedule tree-

based irregular parallelism. 
•  Distributed-memory parallelization:  use MPI, BLACS, and PBLAS;  arrange 

processes in a tree structure with nested subgroups; use proportional 
mapping of e-tree and HSS tree nodes to balance workload. 

•  Results: using 1024 cores, RS-based HSS construction is 5x faster than RRQR. 

•  New parallel StruMPACK software to be released in Fall 2014. 
Future Plans 
•  Partitioning/ordering to expose better low rankness (“admissible condition”). 
•  Exploit fine-grained parallelism. 
•  Analyze communication lower bound.  

FASTMath Direct Solver Technologies 

We	
  develop	
  scalable	
  sparse	
  direct	
  linear	
  solvers	
  and	
  effec2ve	
  precondi2oners	
  for	
  the	
  most	
  challenging	
  linear	
  systems,	
  which	
  are	
  o:en	
  too	
  difficult	
  for	
  itera2ve	
  methods.	
  Our	
  focal	
  efforts	
  are	
  the	
  developments	
  of	
  
three	
  types	
  of	
  linear	
  solvers:	
  	
  The	
  first	
  is	
  a	
  pure	
  direct	
  solver,	
  encapsulated	
  in	
  SuperLU_DIST	
  so:ware.	
  The	
  second	
  is	
  a	
  Schur	
  complement-­‐based	
  hybrid	
  solver,	
  ,	
  encapsulated	
  in	
  PSDLin	
  so:ware.	
  The	
  third	
  type	
  is	
  
the	
  nearly-­‐op2mal	
  precondi2oners	
  using	
  low-­‐rank	
  approximate	
  factoriza2on	
  of	
  the	
  dense	
  submatrices.	
  We	
  are	
  also	
  developing	
  communica2on-­‐avoiding	
  linear	
  algebra	
  algorithms	
  which	
  have	
  the	
  poten2al	
  to	
  be	
  
used	
  in	
  the	
  above	
  sparse	
  linear	
  solvers.	
  

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130 
       

.	
  

•  New, Stronger Communication Lower Bounds 
•  Old: Latency_Lower_Bound = Bandwidth_Lower_Bound / 

Largest_Message_Size 
•  Attainable for Matmul (yielding perfect strong scaling) but not LU 

•  New: for LU (and other algorithms with similar dependencies): 
Latency*Bandwidth = Ω (n2) 

•  Can't minimize both simultaneously 
•  2.5D LU is optimal for all choices of latency and bandwidth 
•  Similar results for dense TRSV, Akx kernel for stencils-like matrices 

•  Generalizing Lower Bounds and Optimal Algorithm to More Programs 
•  Old: Applied to direct linear algebra, i.e. programs expressible as 3-nested 

loop accessing 3 arrays, eg C(i,j), A(i,k), B(k,j) 
•  New: Applies to *any* programs expressible as any number of nested 

loops,  accessing any number of arrays, with any subscripts that are affine 
combinations of loop indices, eg C(i,j,2*i+3*j,k-2*m,...) 

•  Examples beyond linear algebra: Direct n-body algorithms (where 2 or 
more bodies interact), tensor contractions, Database join, ... 

Application Impact 

FASTMath Team Members: Jim Demmel (UC Berkeley), Sherry Li, Francois-Henry Rouet, Pieter Ghyseles (Lawrence Berkeley National Laboratory) 
 

Multicore / GPU-aware SuperLU 

Objectives 
•  Develop scalable sparse direct linear solvers to support simulations of 

numerically challenging problems, e.g., accelerator, fusion, quantum chemistry, 
and fluid mechanics. 

•  Efficient utilization of new hardware resources, especially heterogeneous nodes. 

Recent Accomplishments 
•  New hybrid programming code: MPI+OpenMP+CUDA, able to use all the CPUs 

and GPUs on manycore computers. 
•  New CPU multithreading and GPU  

•  Algorithmic changes:   
•  Aggregate small BLAS operations into larger ones. 
•  Multithreading Scatter/Gather operations. 
•  Hide long-latency operations. 

•  Results: using 100 nodes GPU clusters, up to 2.7x faster,  2x-5x memory saving.  
•  New SuperLU_DIST 4.0 release, August 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Future Plans 
•  Intel Xeon Phi in progress. 
•  More OpenMP for the “other” part, e.g., triangular solve. 

•  Study on larger GPU cluster: Titan, Blue Waters. 
References 
•  P. Sao, R. Vuduc, and X.S. Li, “A distributed CPU-GPU sparse direct solver”, Proc. of Euro-Par 

2014 Parallel Processing, August 25-29, Porto, Portugal. 
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①  Aggregate small blocks  

②  GEMM of large blocks 

③  Scatter  

GPU acceleration:  

Software pipelining to 
overlap GPU execution 
with CPU Scatter, data 
transfer.   

Parallel HSS Low Rank Factorization 
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Randomized Butterfly Transformations 

Butterfly matrix of size n×n: B<n> =
1
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Recursive Butterfly matrix is a product of butterfly matrices, n = 2d :
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⋅W <n,d−1>,  with W <n,1> = B<n>

Communication-Avoiding Direct Methods 

•  Use of PDSLin reduces time to solution and memory by factors of 20 and 5, 
respectively, in the ACE3P code for modeling accelerator cavities (ComPASS). 

•  SuperLU is used in the PEXSI method for electronic structure calculations 
(BES SciDAC projects:  AMIS and DGDFT), and the fusion simulation codes 
M3D-C1 and NIMROD (FES Scidac: CEMM).  

•  SuperLU has over 27,000 downloads in FY2013. It is used in commercial 
mathematical libraries, such as Cray's LibSci, FEMLAB, HP's MathLib, IMSL, 
NAG, OptimaNumerics, and Python (SciPy). 


