
Objectives
•  Use RBT as preprocessing to avoid expensive pivoting in sparse LU or LDLT.
•  RBT is easily scalable, as opposed to numerical pivoting.

Recent Accomplishments
•  RBT: B = UTAV, where U and V are recursive butterfly matrices.
 B is guaranteed to be factorizable without pivoting.
•  The increase of B’s factors size is modest for many matrices.

•  Tested 90 sparse matrices, compared to SuperLU (GE with partial
pivoting): 37 have smaller factor size, 30 have increase <= 2x, 23 have
increase > 2x. 69 have <= 2 digits loss of solution accuracy.

•  In the process of parallelization study in SuperLU_DIST.

References
•  M. Baboulin, X.S. Li and F.-H. Rouet, “Using Random Butterfly Transformations to avoid

pivoting in sparse direct methods”, VECPAR 2014 Conference, June 30 – July 3, 2014.

Objectives
•  Develop a new class of sparse approximate factorization algorithms that

exploit the data-sparseness (low-rankness) in matrix off-diagonal blocks.
•  As direct solvers for PDEs with smooth kernels, BEMs, integral equations, or

preconditioners for general problems.
•  Use Hierarchically Semiseparable (HSS) representation (nested bases),

achieves asymptotically lower complexity in both FLOPS and communication.

Recent Accomplishments
•  Randomized sampling in place of traditional RRQR for low-rank compression,

which simplies extend-end in sparse MF, further reduces operation complexity.
•  Shared-memory parallelizaion: use OpenMP task pragma to schedule tree-

based irregular parallelism.
•  Distributed-memory parallelization: use MPI, BLACS, and PBLAS; arrange

processes in a tree structure with nested subgroups; use proportional
mapping of e-tree and HSS tree nodes to balance workload.

•  Results: using 1024 cores, RS-based HSS construction is 5x faster than RRQR.

•  New parallel StruMPACK software to be released in Fall 2014.
Future Plans
•  Partitioning/ordering to expose better low rankness (“admissible condition”).
•  Exploit fine-grained parallelism.
•  Analyze communication lower bound.

FASTMath Direct Solver Technologies

We	
 develop	
 scalable	
 sparse	
 direct	
 linear	
 solvers	
 and	
 effec2ve	
 precondi2oners	
 for	
 the	
 most	
 challenging	
 linear	
 systems,	
 which	
 are	
 o:en	
 too	
 difficult	
 for	
 itera2ve	
 methods.	
 Our	
 focal	
 efforts	
 are	
 the	
 developments	
 of	

three	
 types	
 of	
 linear	
 solvers:	
 	
 The	
 first	
 is	
 a	
 pure	
 direct	
 solver,	
 encapsulated	
 in	
 SuperLU_DIST	
 so:ware.	
 The	
 second	
 is	
 a	
 Schur	
 complement-­‐based	
 hybrid	
 solver,	
 ,	
 encapsulated	
 in	
 PSDLin	
 so:ware.	
 The	
 third	
 type	
 is	

the	
 nearly-­‐op2mal	
 precondi2oners	
 using	
 low-­‐rank	
 approximate	
 factoriza2on	
 of	
 the	
 dense	
 submatrices.	
 We	
 are	
 also	
 developing	
 communica2on-­‐avoiding	
 linear	
 algebra	
 algorithms	
 which	
 have	
 the	
 poten2al	
 to	
 be	

used	
 in	
 the	
 above	
 sparse	
 linear	
 solvers.	

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130

.	

•  New, Stronger Communication Lower Bounds
•  Old: Latency_Lower_Bound = Bandwidth_Lower_Bound /

Largest_Message_Size
•  Attainable for Matmul (yielding perfect strong scaling) but not LU

•  New: for LU (and other algorithms with similar dependencies):
Latency*Bandwidth = Ω (n2)

•  Can't minimize both simultaneously
•  2.5D LU is optimal for all choices of latency and bandwidth
•  Similar results for dense TRSV, Akx kernel for stencils-like matrices

•  Generalizing Lower Bounds and Optimal Algorithm to More Programs
•  Old: Applied to direct linear algebra, i.e. programs expressible as 3-nested

loop accessing 3 arrays, eg C(i,j), A(i,k), B(k,j)
•  New: Applies to *any* programs expressible as any number of nested

loops, accessing any number of arrays, with any subscripts that are affine
combinations of loop indices, eg C(i,j,2*i+3*j,k-2*m,...)

•  Examples beyond linear algebra: Direct n-body algorithms (where 2 or
more bodies interact), tensor contractions, Database join, ...

Application Impact

FASTMath Team Members: Jim Demmel (UC Berkeley), Sherry Li, Francois-Henry Rouet, Pieter Ghyseles (Lawrence Berkeley National Laboratory)

Multicore / GPU-aware SuperLU

Objectives
•  Develop scalable sparse direct linear solvers to support simulations of

numerically challenging problems, e.g., accelerator, fusion, quantum chemistry,
and fluid mechanics.

•  Efficient utilization of new hardware resources, especially heterogeneous nodes.

Recent Accomplishments
•  New hybrid programming code: MPI+OpenMP+CUDA, able to use all the CPUs

and GPUs on manycore computers.
•  New CPU multithreading and GPU

•  Algorithmic changes:
•  Aggregate small BLAS operations into larger ones.
•  Multithreading Scatter/Gather operations.
•  Hide long-latency operations.

•  Results: using 100 nodes GPU clusters, up to 2.7x faster, 2x-5x memory saving.
•  New SuperLU_DIST 4.0 release, August 2014.

Future Plans
•  Intel Xeon Phi in progress.
•  More OpenMP for the “other” part, e.g., triangular solve.

•  Study on larger GPU cluster: Titan, Blue Waters.
References
•  P. Sao, R. Vuduc, and X.S. Li, “A distributed CPU-GPU sparse direct solver”, Proc. of Euro-Par

2014 Parallel Processing, August 25-29, Porto, Portugal.

�

�

�
� � ��

①  Aggregate small blocks

②  GEMM of large blocks

③  Scatter

GPU acceleration:

Software pipelining to
overlap GPU execution
with CPU Scatter, data
transfer.

Parallel HSS Low Rank Factorization

A≈

D1 U1B1V2
T

U2B2V1
T D2

"

#

$
$
$

%

&

'
'
'

U3B3V6
T

U6B6V3
T D4 U4B4V5

T

U5B5V4
T D5

"

#

$
$
$

%

&

'
'
'

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

U1

U2 U3=
U1
U2

Usmall
3

0
0

V1

U6 V3B36 T

F21

F12F11

F22

Sparse Multifrontal HSS

Dense HSS

Frontal matrix Extend-add

Randomized Butterfly Transformations

Butterfly matrix of size n×n: B<n> =
1
2

R0 R1

R0 −R1

#

$
%
%

&

'
(
(
, R0 and R1 are random diagonal n

2
×

n
2

 matrices,

Recursive Butterfly matrix is a product of butterfly matrices, n = 2d :

W <n,d> =

B1
<n/2d−1>

!

B
2d−1
<n/2d−1>

#

$

%
%
%
%

&

'

(
(
(
(

⋅W <n,d−1>, with W <n,1> = B<n>

Communication-Avoiding Direct Methods

•  Use of PDSLin reduces time to solution and memory by factors of 20 and 5,
respectively, in the ACE3P code for modeling accelerator cavities (ComPASS).

•  SuperLU is used in the PEXSI method for electronic structure calculations
(BES SciDAC projects: AMIS and DGDFT), and the fusion simulation codes
M3D-C1 and NIMROD (FES Scidac: CEMM).

•  SuperLU has over 27,000 downloads in FY2013. It is used in commercial
mathematical libraries, such as Cray's LibSci, FEMLAB, HP's MathLib, IMSL,
NAG, OptimaNumerics, and Python (SciPy).

