
The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

ParaView Catalyst
Scalable In Situ Analysis and Visualization
Ken Moreland1, Jim Ahrens2, Andy Bauer3, Berk Geveci3

1Sandia National Laboratories, 2Los Alamos National Laboratory, 3Kitware, Inc.

Overview
To avoid data bottlenecks in big data simulations, an in situ toolset,
ParaView Catalyst, integrates core data processing and visualization with
simulations to enable scalable data analysis. I/O is one of the most
pressing challenges with large-scale simulations, and it is already common
for simulations to discard most of what they compute in order to minimize
time spent on I/O. Since storing data is no longer viable for many
simulation applications, data analysis and visualization must now be
performed in situ with the simulation to ensure that it is running smoothly
and to fully understand the results that the simulation produces.

Simulation Codes Instrumented with

Catalyst

DoE DoD Other

Albany AdH BEC (William & Mary)
Alegra GEMS LESLIE (Georgia Tech)
CTH Helios PHASTA (UC Boulder)

Hydra SM/MURF Code Saturne (EDF)

Mantevo/miniFE-2.0 UH3D (SciberQuest, Inc.)

MPAS-O

NPIC

Sierra

VPIC

XRAGE

Architecture

Simulation Adaptor

ParaView Catalyst uses VTK’s classes to represent grid and field
information. Due to the variety of grids and field information that simulation
codes provide, it is difficult to create a simple and efficient interface for
automatically generating this information in VTK data structures inside of
Catalyst. To this end, we use an adaptor design pattern to create VTK data
structures from the simulation data structures. This results in low impact on
the simulation code.

With this design there is the potential to waste memory since two separate
data structures are used to store the same data. This can be alleviated by
having VTK data structures directly use the simulation code data structure’s
memory.

Workflow
The workflow for generating ParaView Catalyst output includes generating
Catalyst pipelines to be executed during certain points in the simulation. The
simplest way to do this is by generating Catalyst pipeline Python scripts in
the ParaView GUI. Besides this, Catalyst C++ or Python pipelines can be
hard-coded into the adaptor. In this case, the Catalyst pipelines typically are
provided run-time parameters to give a bit more control over the generated
output.

Disparity Between Computational

Resources
Typically there is about 2 orders of magnitude difference of computational
resources between the leading edge HPC hardware and corresponding
visualization hardware. At OLCF, Titan has 299,008 Opteron cores, 18,688
NVIDIA Tesla K20 GPU accelerator cores and 710 TB of system memory.
Rhea has 3,136 Intel Xeon cores and 12,544 PB of system memory.

The ParaView client can
connect to a Catalyst
enabled simulation run to
check on the status as
well as change the
Catalyst pipelines. For at
scale runs the updates
occur without stopping the
simulation. For debugging
runs the simulation can be
stopped at specified
points to check the
simulation state.

Objective
The main objective for
using ParaView Catalyst
with a simulation run is to
decrease the amount of
time it takes to gain insight
into a given problem. This
includes all pre-processing,
simulation run and post-
processing time required in
the workflow. The graph
below shows that using in

situ analysis can
significantly reduce this
time to insight.

The keys to this time reduction include
reducing the amount of file I/O and
computing on appropriate hardware
with scalable algorithms. For the
Helios simulation shown on the right,
for a single time step it took 448 MB to
store the full simulation data, 2.8 MB
to store the surface extract of the
blades and 71 KB to store the image
shown.

0

5

10

15

20

25

16 32 64 128 256 512 1024 2048

S
ec

on
ds

 p
er

 T
im

e
St

ep

Cores

data generation annotations
write render
cell to point contour
xRage

Catalyst Overhead for XRAGE
𝜌

𝐷𝑣

𝐷𝑡
= −𝛻𝑝 + 𝜇𝛻2𝑣

Simulation + Catalyst

S
creen

S
hots

D
ata

E
xtracts

S
eries

D
ata

S
tatistics

Create the reader and set the filename.

reader = servermanager.sources.Reader(FileNames=path)

view = servermanager.CreateRenderView()

repr = servermanager.CreateRepresentation(reader, view)

reader.UpdatePipeline()

dataInfo = reader.GetDataInformation()

pDinfo = dataInfo.GetPointDataInformation()

arrayInfo = pDInfo.GetArrayInformation("displacement9")

if arrayInfo:

 # get the range for the magnitude of displacement9

 range = arrayInfo.GetComponentRange(-1)

 lut = servermanager.rendering.PVLookupTable()

 lut.RGBPoints = [range[0], 0.0, 0.0, 1.0,

 range[1], 1.0, 0.0, 0.0]

ParaView Cinema
ParaView Cinema can simplify accessing Catalyst output. This is done by
having Catalyst automatically generate a variety of images at each time
step through exploring parameter spaces of camera angles, filter settings,
etc. Then the images are viewed interactively through a web-browser

http://catalyst.paraview.org/

Code Saturne

PHASTA

UH3D
MPAS-O

Because of the
reduced I/O and
scalable algorithms,
the overhead cost of
using ParaView
Catalyst is kept low.

