Parallel In Situ Algorithm for Efficient Ice Calving Detection

ABSTRACT

Ice calving event is a process of producing free-floating icebergs and ice fracture. Studying this event helps scientists to project global climate change. In this work, we present a parallel in situ AMR-aware connected-component labeling algorithm, which efficiently detects real time ice calving event in the AMR-based **BISICLES** simulation.

MOTIVATION

Adaptive Mesh Refinement (AMR)

- > Dynamically refines logically-rectangular patches in time and space dimensions
- Improve efficiency of computational resources while meeting desirable error levels
- Hierarchical and complex data structure

with 3 levels

AMR-based BISICLES Simulation

- > A scalable AMR ice sheet modeling application built on Chombo framework
- Resolve dynamic features like grounding lines and ice streams using very fine resolution
- Solves a **nonlinear coupled elliptic system** for the ice velocity field over the entire ice sheet/ice shelf system

Schematic showing computed ice velocity for Antarctic continent (right), and meshing for the Pine Island Glacier (left). The grounding line location is shown as red line.

Ice Calving Event

- > A process of producing free-floating icebergs and ice fracture
- > Large-scale calving events (i.e., iceberg twice size of Atlanta breaks off of Antarctica) are highly interesting to scientists
- Impact global climate change

Impact of Ice Calving Event

> Occasional ice calving events can result in disconnected portions of floating ice shelves, leading to an **ill-posed system** which causes the **solvers to diverge**

Contact: Arie Shoshani < shoshani@lbl.gov >

The Scalable Data Management, Analysis, and Visualization Institute http://sdav-scidac.org

Xiaocheng (Chris) Zou, Surendra Byna, Hans Johansen, Daniel Martin, Nagiza F. Samatova, Arie Shoshani, John Wu North Carolina State University and Lawrence Berkeley National Laboratory

Office of

Science