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Introduction

• One of the important goals of ACES4BGC project is to implement and optimize new
computationally efficient advection algorithms for large number of tracer species

• The resulting upgrades to the Community Earth System Model (CESM) will deliver
new scientific capabilities, offer unprecedented accuracy in representing biogeochem-
ical interactions, and yield improved predictive skill and computational performance.

• Significant computational challenges must be overcome to meet the scientific require-
ments for supporting large numbers of reactive tracers in CESM. The most significant
challenge is presented by the advection of many tracers in the atmosphere and ocean
component models.

Advection / Transport Problem in Climate Codes

• The transport problem can be cast in Eulerian, Lagrangian or Arbitrary Lagrangian-
Eulerian form. One popular variant is semi-Lagrangian method, run in Lagrangian
mode for one time step and then interpolate back to the Eulerian mesh (Staniforth
and Cote, 1991)

• At every time-step, the semi-Lagrangian approach involves interpolating quantities
from a distorted Lagrangian mesh to a regular Eulerian mesh or vice versa, depend-
ing on the trajectories. The transport problem is reduced to a regridding problem if
the Lagrangian mesh movement is prescribed (Lauritzen et al., 2010)

• Conservative regridding (remapping) has been made practical by the application of
Gauss-Green’s theorem over the intersection mesh, which converts area-integrals
into line-integrals. This approach has been applied for up to second-order static grid-
to-grid remapping in (Jones, 1999) and the method was extended for regular lat-lon
grids and cubed-sphere grids (Ulrich et al., 2009)

• For unstructured meshes that arise in either CAM-SE or MPAS formulations (figure 1)
a more general framework for advection/transport is needed.
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Figure 1: Unstructured meshes of interest

Transport Equations
A tracer, represented by its mixing ratio q and mass ρq, is transported in the flow with
velocity u
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New methods should satisfy
• Local conservation of ρq
• Monotonicity or shape preservation of q
• Free stream preserving (consistency) when q = 1

Semi-Lagrangian Remap Algorithm for Transport
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• Consider a cell ci with cell-averaged density ρi and tracer qi at time t

• Compute Lagrangian departure grid

• Compute tracer reconstructions on Eulerian (arrival) grid

• Find intersections between departure grid and arrival grid

• Integrate tracer reconstructions over cell intersections

• Update tracer on arrival grid qi(t + ∆t) = qLi (t)

By carefully choosing reconstruction function the method is guaranteed to be tracer
mass conserving and free stream preserving. The method is stable for large time steps
and in practice can allow for CFL ∼ 5 in the atmosphere. It also is efficient for large
numbers of tracers because the cell intersections are computed once and used for all
tracers.

Coupling with CAM-SE
The MOAB grid intersection algorithm is now being coupled with CAM-SE. The algo-
rithm for tracer transport begins with the initialization of the CAM-SE Eulerian tracer
grid in MOAB, distributed on each processor (CAM-SE coarse grid). The CSLAM fine
grid is instantiated on each processor, and the parallel infrastructure of MOAB is lever-
aged, so the ghosting and communication with neighboring processors is relatively easy
to do.
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Figure 3: Initial CAM-SE mesh (a) and CSLAM mesh (refined) on 2 out of 16 proces-
sors (b)

Figure 3 shows the initial CAM-SE coarse mesh, for ne=15, and the distribution of the
refined CSLAM mesh on the first 2 processors, for a small run, on 16 processors. The
initial partition of mesh is done using an HSFC method implemented in HOMME, and the
instantiation of the MOAB mesh data structures is done locally, on each task/processor.
Global identificators are used in MOAB to resolve sharing and ghosting of local data
with the neighbors.
For each time step, departure point locations computed in CAM-SE are passed to
MOAB. MOAB will then compute intersections between departure (Lagrangian) grid and
arrival (Eulerian) grids and return the intersection polygons to HOMME, which will con-
tinue with remapping.

Figure 4: Software link between HOMME/CESM and MOAB

Curently, the interface between MOAB and HOMME is done using a new module in
HOMME, data is flowing between HOMME and MOAB for initialization stage. A special
library is developed in MOAB (mbcslam) , which contains all intersection related code
and initialization.

Linear Complexity Algorithm for Intersection of Overlapping Meshes

• The intersection algorithm used in this paper follows the ideas from (Gander and
Japhet, 2008), in which two meshes are covering the same domain. At the core is an
advancing front method; For simplicity, label the two meshes red and blue, as they
are covering about the same domain.

• First, 2 convex cells from the red and blue meshes that are intersecting are identified,
by using a search tree. This will constitute the seed of the front. Advancing in both
meshes, using adjacency information, we incrementally compute all possible inter-
sections. Important for the algorithm is also a robust scheme, in which 2 intersecting
cells from the different meshes are overlapped and resolved. Every edge on one of
the meshes maintains a list of intersection points, and geometric tolerances are used
to eliminate duplicates and ensure consistency.

• The intersection of cells from different meshes is simplified and more robust if they
are convex. If in the initial meshes there exist concave polygons, they are decom-
posed in simpler convex polygons, by simply splitting along interior diagonals. The
intersection between 2 convex cells will be then a convex polygon. The final result of
meshes intersection will be a set of convex polygons, that cover the common domain.

• All edges of cells on the sphere are considered to be great circle arcs. Using
gnomonic projection, on one of the six planes, each arc becomes a straight line in
the gnomonic plane, and a robust intersection is much easier to achieve.

Figure 5: Advancing front for local intersection

Figure 5 shows how the algorithm advances; Each red cell is resolved, by building a
local queue of blue cells that intersect the red cell. Blue cells are added to the local
queue incrementally, using adjacency. At the same time, a global queue with seeds is
formed, and it contains pairs of red/blue cells that have the potential to intersect. When
there are no blue cells in the local queue, algorithm advances to the next seed from the
global queue

Parallel Implementation Considerations

• Use parallel infrastructure from MOAB (Tautges et al., 2004)
• The two meshes to be intersected will be distributed; the arrival mesh is fixed, and
can be distributed in advance (use Zoltan (Devine et al., 2002))

• The algorithm works with any distribution of the arrival mesh, and CAM-SE code use
space filling curve method.

• The departure mesh needs to be distributed at run time
- compute boundary boxes for each arrival processor mesh
- departure points position stored in a MOAB tag, on each arrival node
- departure cell bounded box computed locally, for each arrival cell
- sent to processors whose bounding boxes are within tolerance
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Figure 6: (a) initial distributed arrival grid. (b) departure grid on one of the processors
(blue mesh) (c) covering departure mesh after communication

Figure 6(a) shows initial arrival mesh, distributed over processors. Each vertex knows
its departure position, and the algoritm computes departure cells, blue mesh (b). De-
parture cells that intersect bounding boxes of other processors are sent there. Each
arrival grid will be covered by departure mesh (c).
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Figure 7: (a) results on fusion.lcrc.anl.gov (b) results on mira.alcf.anl.gov

Figure 7 shows the scalability of the algorithm up to 64k tasks, on an MPAS model with
65M cells. Arrival mesh is distributed using Zoltan when loading the model; Recur-
sive Coordinate Bisection is used, which ensures a balanced distribution, and that the
bounding boxes of partitions have a low overlap. Intersection is almost embarassingly
parallel, as long as the mesh is communicated between processors, and it scales well.
It is important to note that this intersection needs to be carried out at each time step
and at each level.
At high processor count we notice that the communication cost for departure mesh is
not decreasing anymore. Also, these two machines have different networks, and this ex-
plains the differences in results. We may need to change the algorithm, or the method-
ology. One method would be to ghost sufficient layers in the beginning, on arrival mesh.
Considering that the target CFL number would be at most 5, 5 ghost layers would be
enough. The departure mesh would lay then in arrival mesh and the ghosted region on
each processor, so no communication would be needed for the covering mesh.

Tracer Transport Example in MOAB

A simplified transport/advection method is implemented in MOAB, and it is exercising
the intersection algorithms explained above. Quantities of interest are discretized on
the arrival mesh at each time step.
Higher order approximations should be employed, but in this study, first order approxi-
mations were used, i.e., quantities of interest were averaged over each cell. The original
CSLAM type implementation uses higher order approximations. So for this MOAB im-
plementation, only the area of the intersection polygons determines the resulting tracers
concentrations. Still, as some departure polygons will end up on different processors,
their tracer mass concentrations need to be communicated to the corresponding arrival
cell. So for each time step in the approximation, two communication steps are involved,
one to distribute the departure mesh to processors, and second to communicate back
the tracer concentrations from the intersection polygons. For a higher order approxima-
tions of the tracers on the arrival/departure mesh, complete information about polygons
will be needed.
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Figure 8: (a) initial tracer field (b) velocity field (c) final tracer field

Figure 8 shows the results of a transport simulation as in (Nair and Lauritzen, 2010),
the cosine bell example and non-divergent flow. The transported scalar field follows
complex trajectories and undergoes severe deformation during the simulation, but it re-
verses its course halfway through and returns to the initial position by the end of the
simulation. If there would be no errors in the simulation, the initial and final plot should
be the same. The pictures show that the constant tracer approximation is not sufficient,
higher polynomial order is mandatory.

Conclusions

An efficient intersection algorithm for distributed unstructured meshes has been devel-
oped and is currently being integrated into CAM-SE. This intersection algorithm will
provide CAM-SE with the ability to perform efficient tracer transport on fully unstruc-
tured quadrilateral meshes on the sphere. The infrastructure and methodology will be
leveraged for MPAS framework, too.
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