

Xolotl Web Site: https://sourceforge.net/projects/xolotl-psi/

Plasma-Surface Interaction

The Plasma-Surface-Interactions (PSI) SciDAC project is focused on predictive modeling of material damage in the tungsten wall material of the plasma divertor in a Tokamak fusion reactor system. The effort includes multiscale modeling techniques involving particle in cell (PIC) methods, molecular dynamics (MD), and continuum modeling, for which a high performance simulator named Xolotl is being developed.

Xolotl (http://sourceforge.net/projects/xolotl-psi/) predicts the evolution of the surface of the material by solving the cluster dynamics formulated Advection-Diffusion-Reaction (ADR) equations with an incident flux

Framework

- Started from scratch using C++ and MPI.
- The solver part is independent of the physics part.

- Other tools: Eclipse as an IDE, CMake, HDF5 to store the results, Java for the preprocessor.
- Unit and integration tests with BOOST to insure the correct behavior of the code.

Future Improvements

- Comparison of the results with the results from other software.
- Use of OpenMP for multithreading.
- Add support for GPUs.
- Implementation of the 2D problem.

Acknowledgements

This work has been supported by the U. S. Department of Energy, Offices of Fusion Energy Sciences and Advanced Scientific Computing Research through the SciDAC-3 program, and by the ORNL Postgraduate Research Participation Program which is sponsored by ORNL and administered jointly by ORNL and by the Oak Ridge Institute for Science and Education (ORISE).

Xolotl: A Plasma Surface Interactions Simulator J. J. Billings, S. Blondel, C. L. Jernigan, A. P. Belt, D. E. Bernholdt, D. M. Higdon, O. M. Knio, A. J. McCaskey, J. S. Meredith, H. N. Najm, P. C. Roth, K. Sargsyan, B. D. Wirth, T. Yamaguchi-Phillips SciDAC Project Web Site: https://collab.mcs.anl.gov/display/PSIscidac/

 $\delta_t \bar{C} = \phi \cdot \rho + D \nabla^2 \bar{C} - \nabla \bar{\nu} C - \bar{Q}(\bar{C})$

The Solver • PETSc (http://www.mcs.anl.gov/petsc/) "is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations". • 1D implementation of the ADR equations using finite difference. • Use PETSc's Adaptive Runge-Kutta Implicit Time-Stepper: the size of the time step is adaptive and changes at each time step. InterstitialCluster • This size depends on the stiffness of the problem. High-Performance Computing • Discretization of the problem over a grid: possibility of spreading the grid over many processes and solving the ADR equations at each grid point almost independently. • PETSc takes care of: splitting the grid between the processes, communication between the processes, etc. Preprocessor • In order to falicitate the use of Xolotl for a new user a Java preprocessor was created. • Generates all the files and options needed by Xolotl to run: network file, performance and visualization handlers, PETSc options, . . . • Ability to modify these option simply through the command line when the preprocessor is executed.

Pacific Northwest

NATIONAL LABORATORY

- mixed clusters).
- spatial positions.
- tions.

H. cluster/bubble •••••••••••••••••••••••••••••••••••
Reactions:
Single species clustering
Helium-vacancy clusterir
Helium absorption by H
He_AV
Single vacancy absorption He
Vacancy reduction by in He_A
Vacancy-interstitial anni $V_A + I$
Single species dissociation
Single helium dissociatio

 $X_A \to X_{A-1} + X$ on from HeV cluster Sing $He_A V_B \rightarrow He_{A-1} V_B + He$ Single vacancy dissociation from HeV cluster $He_A V_B \rightarrow He_A V_{B-1} + V$

Trap mutation

Some Physics

• A network of clusters represents the material (interstitial (I) and vacancy (V)) that is irradiated by a helium flux (helium (He) and

• The population of each cluster is given by its concentration at all • The solver is in charge of the time evolution of these concentra-

 $X_A + X_B \to X_{A+B}$ ١g $Ie_A + V_B \to He_A V_B$ eV cluster $V_B + He_C \rightarrow He_{A+C}V_B$ on by HeV cluster $_AV_B + V \rightarrow He_AV_{B+1}$ iterstitial absorption in HeV cluster $V_B + I_C \rightarrow He_A V_{B-C}$ ihilation $I_B \rightarrow V_{A-B} \ if \ A > B$

 $\rightarrow I_{B-A} \ if \ A < B$ $\rightarrow 0 if A = B$

on

 $He_AV_B \rightarrow He_AV_{B+1} + I$

