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Abstract Bayesian Model Calibration Framework is Used to Posterior Uncertainty for DFT Parameters ©
Bayesian methods have been very successful in quantifying uncertainty in physics-based Com bine Simulation Output and Experiments to
problems in parameter estimation and prediction. In these cases, physical measurements y . o Posterior uncertainty for the 12-d
are modeled as the best fit of a physics-based model n(8), where 8 denotes the uncertain, Estimate Model Parameters and Make Predictions DFT parameter vector after
best input setting. Hence the statistical model is of the form conditioning on the various data
y=n(0) + ¢, model runs Simulations and experimental sources: masses (spherical nuclei),

masses (deformed nuclei), charge
radius (spherical radius), fission
isomer energy, odd-even staggering
(neutrons), odd-even staggering

where € accounts for measurement, and possibly other error sources. When non- linearity is
present in n(-), the resulting posterior distribution for the unknown parameters in the Bayesian
formulation is typically complex and non-standard, requiring computationally demanding

observations are combined
according the the Bayesian model
calibration of Kennedy and O’Hagan

computational approaches such as Markov chain Monte Carlo (MCMC) to produce (2001). t 1-d densiti n
multivariate draws from the posterior. While quite generally applicable, MCMC requires (protons). -d densiies are shown
T . . P . T model or system inputs a|0ng the d|agona| Of the f|gure, 2'd
thousands, or even millions of evaluations of the physics model n(-). This is problematic if the 6 model calibration parameters marginal distributions are
model takes hours or days to evaluate. To overcome this computational bottleneck, we ((x)  true physical system response given inputs x
_ _ ) _ _ (2.6) simulat o 8 represented (redundantly) along the
present an approach adapted from Bayesian model calibration. This approach combines posterior uncertainty ;éi 1";:r?m‘l‘e"nijpfb"jwaati:';f the physical system off-diagonals.
output from an ensemble of computational model runs with physical measurements, within a 5(z)  discrepancy between ¢ () and 7(z., ) N @
statistical formulation, to carry out inference. A key component of this approach is a statistical . ;"basizzt‘i‘:rfﬂe':‘rzﬁ;'tr:;:“:i:::t'jfﬂa"d bias
response surface, or emulator, estimated from the ensemble of model runs. We demonstrate ’
: : : : : : : ylz) = ((z) +e(z)
this approach with a case study in estimating parameters for a density functional theory (DFT) JIMK y(z) = n(z,0) +6(x) + e(z) . . .
model, using experimental measurements from a collection of atomic nuclei. We also g Parameter Uncertainty for Data Predictions

demonstrate how this approach produces uncertainties in predictions for recent mass
measurements obtained at CARIBU Facility at Argonne National Laboratory (ANL).
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