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Bayesian Model Calibration Framework is Used to 
Combine Simulation Output and Experiments to 

Estimate Model Parameters and Make Predictions 
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Posterior Uncertainty for DFT Parameters θ 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Uncertainty for Data Predictions 
 
 
 
 
 
 
 
 
 
 
Posterior Predictions for new ANL N-rich Measurements 
 
 
 
 
 
 
Parameter Uncertainty Propagated thru to Estimate 
2-Neutron Drip Probabilities. 
      Neutron drip probabilities 
      for Tin and Yb.  Here the drip 
      line uncertainty is far greater 
      for Yb. 
 
 
 
Drip probabilities are estimated from Monte Carlo simulations of binding 
energy curves for each Z 

Bayesian Model Formulation  
 
 
 
 

Posterior uncertainty for the 12-d 
DFT parameter vector after 
conditioning on the various data 
sources: masses (spherical nuclei), 
masses (deformed nuclei), charge 
radius (spherical radius), fission 
isomer energy, odd-even staggering 
(neutrons), odd-even staggering 
(protons). 1-d densities are shown 
along the diagonal of the figure; 2-d 
marginal distributions are 
represented (redundantly) along the 
off-diagonals. 
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Predictions for recently produced mass 
measurements taken at ANL’s CARIBU 
facility.  Unlike the above predictions, 
these predictions are not for 
measurements that were used to 
estimate the model parameters.  These 
holdout predictions agree very well with 
the actual measurements. 

Simulations and experimental 
observations are combined 
according the the Bayesian model 
calibration of Kennedy and O’Hagan 
(2001). 
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Emulating the DFT Code & Sensitivities 
 

Estimating the response surface 
emulator η() allows exploration of the 
behavior of the DFT code as input 
parameters are varied.  This figure 
shows the sensitivity of the masses 
computed via DFT as each of the 12 
parameters are varied from low to high. 
The plots show how computed masses 
change for three different nuclei (Z-N) – 
one spherical, one deformed, and one 
from the new ANL measurements – as 
the parameters are varied, one at at 
time.  
 

Abstract 
Bayesian methods have been very successful in quantifying uncertainty in physics-based 
problems in parameter estimation and prediction. In these cases, physical measurements y 
are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, 
best input setting. Hence the statistical model is of the form  

y = η(θ) + ε,  
where ε accounts for measurement, and possibly other error sources. When non- linearity is 
present in η(·), the resulting posterior distribution for the unknown parameters in the Bayesian 
formulation is typically complex and non-standard, requiring computationally demanding 
computational approaches such as Markov chain Monte Carlo (MCMC) to produce 
multivariate draws from the posterior. While quite generally applicable, MCMC requires 
thousands, or even millions of evaluations of the physics model η(·). This is problematic if the 
model takes hours or days to evaluate. To overcome this computational bottleneck, we 
present an approach adapted from Bayesian model calibration. This approach combines 
output from an ensemble of computational model runs with physical measurements, within a 
statistical formulation, to carry out inference. A key component of this approach is a statistical 
response surface, or emulator, estimated from the ensemble of model runs. We demonstrate 
this approach with a case study in estimating parameters for a density functional theory (DFT) 
model, using experimental measurements from a collection of atomic nuclei. We also 
demonstrate how this approach produces uncertainties in predictions for recent mass 
measurements obtained at CARIBU Facility at Argonne National Laboratory (ANL).  

 
 

Nuclear Density Functional Theory 
 

Measurements and Quantities of Interest 
 

DFT solver determines ρ, τ, 
J for specified parameters 

• Built on effective nuclear 
forces between protons and 
neutrons 

• Uses densities of nucleons 
as main building blocks 

odd-even staggering 

deformed and symmetric nucleus shapes 
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Charge radius can be measured 
for symmetric nuclei 
Shapes obtained from DFT code 

fission isomer energy 

Odd-even staggering measures 
the difference in binding energy 
between odd and even nuclei. 
This is computed for ±1 neutron 
(OESn) or proton (OESp) 

Fission isomer energy 
differences (FIE) is measured 
(and computed for different 
isomers of Pu. 

Binding energy is the additional 
energy released when a nucleus 
is completely separated. 

Measurements and accompanying simulations are made 
for binding energy, radius, isomer energies, and odd-
even staggering for selected nuclei. 
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