We apply a series of projection techniques on top of tensor networks to compute energies of ground state wave functions with higher accuracy than tensor networks alone with minimal additional cost. We consider both matrix product states as well as tree tensor networks in this work. Building on top of these approaches, we apply fixed-node quantum Monte Carlo, Lanczos steps, and exact projection. We demonstrate these improvements for the triangular lattice Heisenberg model, where we capture up to 57% of the remaining energy not captured by the tensor network alone. We conclude by discussing further ways to improve our approach.

References

5. The ITensor library is a freely available code developed and maintained on http://itensor.org/index.html.

Test System

• Heisenberg Model on a Triangular Lattice
• 10 x 10 lattice
• open boundary conditions

Basis: \{ |ψ⟩, H |ψ⟩, \ldots \}

Solve: \[H |ψ⟩ = ES |ψ⟩ \] in this basis

Ways to (exactly) compute basis

- MPS/MPO Formalism
- Quantum Monte Carlo
- Hybrid QMC/MPO

Way to (approximately) compute basis

- Apply \[H |ψ⟩ \] via MPO
- Truncate to smaller bond dimension \(b^2 \)
- Iterate

Acknowledgements

We acknowledge support from grant DOE, SciDAC FG02-12ER46975. Computation was done on Blue Waters (award number ACI 1238993) and TauB. We thank Cyrus Umrigar for discussions and critical reading of the manuscript. Katie Hyatt and Michael Kolodrubetz for useful conversations and Miles Stoudenmire for help with ITensor.