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Overview

Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a large number eigenpairs of a Hermitian matrix in the context of density functional theory based electronic structure calculation 2) computing a few selected eigenpairs of a
non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing the full spectrum of Bethe—Salpeter Hamiltonian matrix which has a special structure.

Computing a large invariant subspace of a Hermitian matrix Non-Hermitian eigenvalue problems: applications and computational challenges Computing all eigenpairs of the Bethe—Salpeter eigenvalue problem

» Large-scale density functional theory based electronic structure calculations require » Electronic resonant states (method of complex coordinate rotation).
computing a large number of lowest eigenpairs (102 pairs or more).

~ Density functional perturbation theory requires many more lowest eigenpairs (103-10°).

» Equation-of-motion coupled-cluster (EOM-CC) method.

» Require inverting A — o/ (“shift-and-invert”).

» Performance issues
» Limited degree of parallelism (“one-by-one” eigenpair computation).
» Failure to fully take advantage of BLASS.

» Robustness issues.
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» EXisting eigensolvers contain repeated calls of the Rayleigh—Ritz procedure that :

becomes a bottleneck when many eigenpairs are computed on a massively
distributed-memory parallel machines.

» Standard computational kernels for solving dense eigenvalue problems (ScaLAPACK)
do not scale beyond a certain number of cores.
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An exciton (electron-hole pair).

. . . . » Devel | ei | h he k ifficulties.
~ Gompute many lowest eigenpairs on massively parallel high performance computers. evelop a novel eigensolver that overcomes the known dificulties » Exciton energies can be obtained by solving the Bethe—Salpeter eigenvalue problem
» Avoid or reduce the amount of the RR computations. _ - : : Hx = \Xx.
The Generalized Preconditioned Locally Harmonic Residual (GPLHR) method , , o ,
» We compute all eigenpairs of the complex Hamiltonian matrix
The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

» Uses the harmonic Rayleigh—Ritz procedure to extract approximate eigenpairs from L A B
. . . . s . low-dimensional search subspaces. - |—-B —A|’
» The new eigensolver for computing large invariant subspaces of Hermitian matrices. Serf block i . ot BLAS3 Kk | " s lovel
» The standard Rayleigh—Ritz procedure is replaced by a sequence of small dense ~ Periorms block fterations, eflectively leverages ernels, provides multiple levels where A = A* € C2"*2N s Hermitian,

of concurrency.
» Takes advantage of the available preconditioning techniques.
» Robust, better convergence if memory is limited/tight.
» Provides an option of switching between the approximate eigenvector and Schur

B = B € ¢2"%2n js complex symmetric.
» The spectrum of H is symmetric w.r.t. real and imaginary axes.

eigenvalue problems plus the QR factorization of the approximate eigenspace.
» The Rayleigh—Ritz computation is performed only once every 5-10 iterations.
» Takes advantage of the available preconditioning techniques.

» Relatively easy to implement. vectors iterations » Hamiltonian QR algorithm
» The solver has been tested in within the Quantum Espresso and QBox electronic £ Vecharvnski. F X;Je and C. Yana: Computing interior eidennairs of hon-Hermitian » Hamiltonian SR algorithm
structure packages. ' yIsHl, ’ - rang; pLting genp » Hamiltonian Jacobi algorithm

_ | , N , , , matrices, in preparation o o |
E \gecharyr)skl azd C. \I(ang.'A PéO/gcted Pre]ccollzld/tloqu (;;nz{qga.vte Grad/e/;t Algorithm D. Zuev, E. Vecharynski, C. Yang, N. Orms, and A. |. Krylov: New algorithms for iterative ~ Embedding into a 4n x 4n real Hamiltonian matrix
or Computing a Large Invariant subspace of a Hermitian Matrix, in preparation matrix-free eigensolvers in quantum chemistry, J. Comp. Chem., submitted (2014)

» None of above preserves the structure of the spectrum of H in floating-point arithmetic.

Performance of the PPCG algorithm in Quantum Espresso GPLHR in Q-Chem: EOM-CC benchmark » Some are difficult to parallelize.
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» Develop a fully structure-preserving parallel algorithm for BSE.
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Ongoing work on a Cholesky-QR/Hamiltonian-URV method
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- e : Benchmark systems: hydrated photoactive yellow protein chromophore PYPa-W, (left) and dihydrated
Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate liquids 1,3-dimethyluracil (mU),-(H20)2 (right). » H is unitarily similar to

containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon atoms (center), and 5 PYPa-W,/6-31+G(d,p) ~ Im(A) + Im(B) —Re(A) + Re(B) — T
by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right). GPLHR (¢ = 11 a.u.) H=+v-1 Re(A) + Re(B) Im(A) — Im(B) = —V—1Jp(A+ B),
nroots? niters® m Max. # of stored vectors # matvec® where
1o Conv ege ceofege nsolvers for L318(2062ege pai s) Convergen ceofege nsolvers for Gaphe e512(2254ege pa rs) 1C? ege‘ceofege nsolv e‘sfo Sc‘luste (2,550 eigenpai 7s) 1 4 1 8 9 O In ~ Re(A) Im(A) ~ Re(B) _|m(B)
‘ e \ e " T 24 16 N Jn = A= , B=
R 5 | * s W\ A | 3 4 1 24 27 —In O —Im(A) Re(A) —Im(B) —Re(B)
5 8 1 40 63 v = .
: , . T . . Both A and B are real symmetric.
E EALES i gy * 2 The number of requested eigenpairs. ® The number of iterations to converge all eigenpairs. ¢ The total OtN ?, d are real sy et C _ _
H . W ; number of matrix-vector multiplications. » Jn(A+ B) is a 2n x 2n real Hamiltonian matrix.
: | e » In practice A + B is often positive definite
0o o m S _d B s 70 0 B IR o N R e e m me w L\ =oume | S Somey | ~ all eigenvalues of H are real.
Time (sec.) Time (sec.) Time (sec.) 10 2 __S__ 8:;:2;'“-5 1078 == thresﬁold ig:&;ﬁnmﬂ '
(a) Li318 (480 cores) (b) Graphene512 (576 cores) (c) Silicon1000 (2,400 cores) w7 ol
= = [ \Hba » Transform to a skewsymmetric-s.p.d. pencil whenever possible.
. “ | _f » Use the symplectic URV decomposition to handle the most generic case.
Performance prOfIIe Scal gofege sol esfo L318(2062ege pa rs) o C?E::;ﬁg:;:e
* Li318, 200 Ig:‘ggson’ 10-51 é : : é#iteéation} : ; oo 10-51 é : : #iteréation ; -} : ’
* Nev =2000 * o . Fully structure-preservin
* ncpus=480, i 0 o4 160, | Left: PYPa-W,/6-31+G(d,p) for the pairs with converged energies of 4.11 and 4.20 eV; - y P J

140+

* Tol=1le-6 RR = = s, | * Right: (mU),-(H20)./6-311+G(d,p) for the pairs with converged energies of 8.89 and 10.04 eV. ~ Avoid complex arithmetic

T RRevery S GEMM 5 10 A » Potentially high parallel efficiency
* Max subspace Cholesky QR 6 0 80" ¢ ¢
dimension for 60¢ N L

Davidson is 2k Total 41 71.4 40 100 200 300 400 500 600 700 800
Number of cpus




