

Data Management and Uncertainty Quantification for EPSI

R. Moser, M.Greenwald, M. Parashar, S. Klasky, and the EPSI Team U. Texas, MIT, ORNL, Rutgers

Uncertainty Quantification

Improved Profile Fitting and UQ using Gaussian Process Regression(MIT)¹

- EPSI Codes need UQ analyzed experimental data for reliable validation
- Fitting of smooth profiles from discrete observations key plasma simulation input
- Existing spline fitting techniques have deficiencies
- Gaussian Process Regression(GPR) captures existing results while delivering
 - Statistically rigorous fits for plasma profiles and gradients(key XGC1 inputs)

Spline vs GPR fitting Workflows

ADIOS (2013 R&D 100 winner. Current version 1.7) has been integrated with EPSI simulations to support:

- Data staging with low-latency, tight coupling execution environments through in-memory data exchanges between different codes.
- Service Oriented Architecture (SOA) for on-demand

Low-latency, tight coupling SOA, on-demand approach Coupling Support heterogeneous environments Dynamic workflow execution On-line feed-back Machine-guided execution Workflow Provenance and knowledge discovery

Data Management

- Uncertainty estimates for key plasma profiles and gradients
- Increased convergence rate of forward uncertainty propagation
- Implementation general and widely applicable.

Profile fitting for T_e(electron temperature) from Thomson Scattering (TS) and electron cyclotron emission(ECE) system data. GPR results shown using maximum a posteriori(MAP) and Markov Chain Monte Carlo(MCMC) approaches. Error bars and dark shading is $\pm \sigma$, light shading $\pm 3\sigma$.

0.2 0.3 0.4 0.5 0.6

 $-60^{1}_{0.0}$

¹ M A Chilenski, M Greenwald, Y Marzouk, N T Howard, A E White, J E Rice, and J R Walk (MIT), submitted to Nuclear Fusion, work supported under cooperative greement C-Mod: DE-FC02-99ER54512

Sensitivity of Plasma Gradients in XGC1 to Applied Heating(UTexas, PPPL)²

• Complete UQ workflow involves characterization of input uncertainties (see above), forward propagation via XGC1, and comparison of quantity of interest(QoI) (often via synthetic diagnostic) with experimental data.

- Coupling executions in heterogeneous computing environments with streaming data support. Network staging over Wide Area Network (WAN) under development.
- Selection and chunked reads to enable schedule optimization.

ADIOS Vis Schema

- Create an easy-to-use schema for ALL ADIOS codes.
- Facilitates data sharing without adding code complexity, or slowing down the code.
- Visualization schema: Semantics of the data for the purpose of visualization.
- Describing visualization data for various tools (VTK,

Data-centric integrated execution environment Our focus is to support EPSI simulation by providing integrated data-centric execution environments for tight code coupling, staged data process, and monitoring system with a support of dynamic workflow system.

- Uncertainties in model input parameters (λ) may impact QoI. Many parameters-intractable sampling problem given the cost of global gyrokinetic simulation.
- Goals of Sensitivity Analysis(SA):
 - Potentially reduce size of input space to be sampled by removing unimportant parameters (*Reduce # of simulations for UQ*)
 - Characterize effect of numerical parameters (grid, particle count, timestep) on Qol (plasma profiles) (*Reduce cost of simulations for UQ*)
 - Quantify effects of embedded physics models on QoI (*Reduce cost of simulations*)
- Motivated by our goal of studying L-H transition and nonlocal edge effect on core, we are performing a SA of plasma profiles to a heating model. We are using a combination of sampling approaches to compute $dQoI/d\lambda$.
- Moderate case (CYCLONE base case) allows sensitivity computations at lower cost.
- Sensitivity predictions combined with scaling studies will be compared against larger scale, enriched physics XGC1 runs: Use reduced system to project UQ of full system
- Repeat process with enriched physics, increased problem size if extrapolation(combined with input uncertainties) is invalidated by new simulation data.

Profile Sensitivities at $P_0=200$ MV

STRAHL takes electron

coefficients D and V and

profile uncertanties. The

impurity transport

profiles and initial guesses on

iterated to match exp. data.

D and V are highly sensitive to

uncertainty envelopes are $\pm \sigma$.

"Steady-state" gradient sensitivities computed at 200MW; temperature (naturally) more sensitive than density.

Relative error, 200MW, 2x timestep, $\partial (R/L_{T_i})/\partial P_0$

Attempt to coarsen timestep(2x) (4x timestep unstable at 200MW) led to marginal accuracy results(Mean error=4.42%), with even worse results for profile (R/L_T) error. QoI averaged over $.3 < \psi < .7$ R/L_{n_i}

 P_0, MW

 R/L_{T_i}

Matlab, ParaView).

Future of XGC Reader

- Support for ADIOS Vis Schema.
- Filtering of turbulence.
- Integration with higher quality rendering with visualization software from OLCF.

EAVL: Extreme Scale Analysis and Visualization Library

EPSI coupling workflow

Goal: To enable tightly coupled XGC1 and XGCa workflow using memory to memory coupling for experimental time scale simulation

DataSpaces As a Service

App1

- Persistent staging servers run as a service.
- Coupled applications can join, progress and leave independently.
- New approach targets more complex workflows and provides more flexibility.
- DataSpaces As a Service will improve resource efficiency and increase I/O performance.

Graph of data transfers between coupled codes

Expected behavior of T, n profiles under P_0 scaling; density QoI stiff and reaches steady state quickly.

² Simulations performed at NERSC on Edison.

Calibration of XGCa Anomalous Diffusion under Uncertainty(UTEXAS,MIT,PPPL)

- Following D.Battaglia et al(2014), we are performing a calibration of an anomalous diffusion model.
 - Calibration will be Bayesian, using SCIDAC QUEST center software QUESO.
 - Plan to use Alcator CMOD data to calibrate model in a variety of modes relevant to L-H transition.
 - May use high-fidelity XGC1 simulation results as additional calibration training data.
 - Will examine use of XGCa+calibrated model as a surrogate for XGC1 sensitivity analysis.

Illustration of the data-centric mapping of the application process for concurrently coupled workflow

Preliminary Result

- Enable exchange data through on-node memory.
- Data locality and core-level parallelism can be exploited to reduce data movement by increasing intra-node data sharing.
- Utilize SSD for data bursting.

www.PosterPresentations.com