

Kilohertz Decision Making on Petabytes HEP-ASCR R&D Effort Towards Geant4 Re-engineering

 Boyana Norris, Paul Ruth, Robert Fowler, Pedro Diniz, Robert Lucas, Makoto Asai, Andrea Dotti, Richard Mount,
Philippe Canal, Daniel Elvira, Soon Yung Jun, James B. Kowalkowski, Marc F. Paterno, Robert M. Roser

Prototype Running On GPU

Surrogate Model for Common Cases
• Fast path calculation for selected particles, material and

physics processes
• Load predefined file (current) or generate on the fly (long-

term goal)
• Fit unbiased bounded error curves (fixed and variable

spacing)

Particle/Material Pairs
• 50% of calls in ~10 particle/material pairs
• 90% of calls in ~40 particle/material pairs
• Observed ~4k pairs
Particle/Material/Process Triples
• 50% of cycles in ~10 triples
• 90% of cycles in ~85 triples
• Observed ~18k triples

Geant4 Geant4 version 10 HEP-ASCR R&D Effort
High energy physics research as we know it today would not be possible without
simulations. The massive production of event samples similar to those expected
in the real experiment is an integral part of the process to design, build, operate
highly complex accelerators and detectors and analyze the physics results. Thus
Geant4-based simulation is currently the largest consumer of LHC compute
cycles. In recent years, space and medicine have become significant user
domains, with applications ranging from instrument and detector response
verification to radiation dose and shielding optimization and analysis of biological
effects. To address such an increasing demand of high statistic simulations, the
Geant4 Collaboration released a new version of Geant4 (Geant4 version 10.0) in
December 2013, which enables the use of multi-core CPUs and coprocessors in
multi-threaded mode.

Geant4 is a toolkit for the simulation of particles passing through
and interacting with matter. Its areas of application include high
energy, nuclear and accelerator physics, as well as studies in space
science, material science, medicine and biology, and also in security
and industrial applications. In high energy physics, the Geant4
toolkit fulfills a critical need for the simulation of detectors at the
LHC and at other existing and future experiments and facilities.

G
ea

nt
4

In
ve

st
ig

at
io

ns

Geant4 GPU applications/prototypes have been improved by:
•Dividing particle tracking calculations into small kernels and
optimizing the kernels for GPU architecture. A physics process
counter kernel was re-engineered to use parallel tree-wise
reduction of counters, which produced
•On Fermi, up to 17x kernel speedup (633us -> 37us) with 2.1%
whole-app execution time reduction
•On Kepler, up to 3x kernel speedup (84.88us -> 27.83us) with 0.17%
whole-app execution time improvement
•Using GPU texture memory for RK4 electromagnetic field
calculations for an improved capture of data locality of a particle
moving through the magnetic field. This produced 1.038x kernel
speedup (166.41ms -> 160.27ms) with 1% whole-app execution
time reduction on Kepler.

Other performance optimization techniques are being pursued such
as GPU thread grid optimization and further small kernel extraction
and tuning.

ANL

CrossSection Optimizations

Geant4 is maintained and further developed by an international
collaboration, which consists of more than 100 physicists and
computer scientists. U.S. involvement in the development of Geant4
has been substantial since its early stages, and has increased with
time. Several key Geant4 functionalities, including core framework,
hadronic physics and visualization, are lead by the SLAC team, while
major contributions in the key areas of hadronic physics and
computing performance are made by the Fermilab team.

1) Performance analysis of the current Geant4 toolkit and its
typical applications,

2) Reorganization of loops in the algorithms to make better
use of vectorization

3) Prototyping GPU-based code
4) Studying automated code transformation for GPUs.

Preliminary scalability test of Geant4 version 10-
pre-beta with full CMS detector geometry on 8-
core Intel Xeon CPU and one Intel Xeon Phi
coprocessor (60 core).
From left to right, CPU, CPU in hyper-thread,
coprocessor, and coprocessor in hyper-thread.

CUDA/OpenCL/OpenAcc

GP
U

 Geant4 HEP
applications
 event-level

parallelism

 highly sequential

 memory
intensive

Data Transfer Performance

e- <<<32,128>>> CPU(ms) GPU(ms) Gain

Bremsstralung 2099 104 20

Ionization 558 25 22

Multiple Scattering 1034 185 6

Electron Kernel 751 61 12

γ <<<32,128>>> CPU(ms) GPU(ms) Gain

Compton Scattering 51 6 8

Photo Electric Effect 70 6 12

Pair Production 50 10 5

Photon Kernel 71 7 10

Detector and Magnetic Field EM Physics and pRNG Navigation and Transportation

Primary/Secondary Particles Track Dispatcher GPU Engine (CUDA C/C++)

 GPU-Vector
 track-level parallelism

 vectorized track
dispatcher

 coalesced memory
access

 work balance
(CPU-GPU)

The process of re-engineering Geant4 has to be started and
should target recently emerging new computing hardware
such as many-core coprocessors and GPUs. Using these new
architectures efficiently requires developing and leveraging
massive parallelization, complex memory hierarchy, and deep
vectorization capability.
FNAL, SLAC, UNC, USC and ANL joined forces to launch an R&D
effort to investigate the possible evolution of the software
infrastructure and numerical algorithms of the Geant4 toolkit
to utilize these emerging technologies.

Nvidia Kepler Architecture

Potential ~5x speed up of all cross section calculation

Cycles Calls Cycles/Call
Slow Path 223,362,860 94,876 2,354

Fast Path 1,059,541,332 5,887,001 179

Total 1,282,904,192 5,981,877 214

Cycles Calls Cycles/Call

Slow Path 6,133,110,476 6,278,517 977

Slow path only:

Fast path with lazy computation of slow path:

Example surrogate model for one triple:
Particle: Neutron
Material: materials_StainlessSteel
Process: G4Neutron InelasticXS Slow path only:

Result Caching
• Multiple calls to GetCrossSection with exactly the same particle, material, process, and energy
• Results in same cross section result

Optimization (implemented):
• Cache recent cross section for particle, material, process triple
• 17% of calls would benefit from this cache
• 29% of GetCrossSection cycles are from these calls

Measured 1.8% performance
increase for real input

Caching tens of pairs
can speedup nearly

all of the calls.

	Slide Number 1

