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Introduction
Desirable reactive, magnetic, or optical properties of molecular systems, are often a direct
result of an underlying electronic structure that is relatively complex (spin-coupled atoms,
low-lying excited states, etc.). Unfortunately, these are the same scenarios in which
traditional approaches to electronic structure break-down. Until somewhat recently, the
only recourse to study such a “strongly correlated” system, was to use a multireference
approach such as CASSCF/CASPT2. These methods require signiVcant user input (active
space deVnition, state-averaging) and are often plagued by numerical issues (diXcult
orbital convergence, intruder-state problems).
Spin-Wip methods, oUer an attractive alternative for many strongly correlated systems.
SF uses orbitals optimized for a higher-spin HF state (which is truly single reference),
and applies a CI operator which Wips one or more electron spins to return states of the
desired total spin, providing a multidetermantal wavefunction, from a single determinant
reference.
In this work, we present a perturbative approximation to RAS-nSF which has signiVcant
computational advantages, while introducing minimal additional error.

RAS-SF
The RAS-nSF method is a cost-eUective member of the “spin-Wip” family of CI methods
which has the advantage of being deVned for an arbitrary number of spin Wips, while
providing both size intensive and spin-pure states. Although, the computational cost
increases factorially with number of spin-Wips, the complexity increases only moderately
with system size (linear in number of CI coeXcients).
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Built from a high-spin ROHF set
of orbitals, the RAS-nSF wave-
function can be thought of as
a CAS-CI wavefunction in a
diUerent spin block (hence the
spin-Wip), augmented with exci-
tations into (holes), and out of
(particles), the active space.
As with all spin-Wip meth-
ods, the use of high-spin
orbitals eliminates the need
for orbital-optimization of a
multi-determintal electronic
state.
However, use of only the active

space spin Wip wavefunction (SF-CAS-CI) is not quite suXcient. The reference orbitals
have been optimized for the high spin state, the low spin states are not described with
an equal amount of variational Wexibility. Thus the hole and particle states are included
which allow the low spin states to relax subject to core and virtual mixing. The RAS-SF
wavefunction is deVned as:
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SF-CAS(h,p)n
Here, we take the SF-CAS-CI wavefunction as our 0th-order wavefunction (A space) and
include the hole, and particle states (X space) via 2nd-order perturbation theory. Using
the Löwdin partitioning technique, we partition the hamiltonian as:
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)
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where |〉 is taken to be the ground-state of the 0th-order Hamiltonian.
•SF-CAS(h,p):
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(a) 1 Spin Flip - (6,4) Active Space (b) 3 Spin Flip - (6,6) Active Space
Grey area: RAS-nSF. Black curve: SF-CAS. Blue curve: SF-CAS(h,p). Green curve: SF-CAS(h,p)0.
Red curve: SF-CAS(h,p)1. Orange dotted line: SF-CAS(h,p)∞.

Spin State Energy Gaps
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The RAS-nSF method was found to be
extremely reliable in predicting ground
state spin multiplicities. Here we deter-
mine how well our perturbative approxi-
mation performs in reproducing the spin-
state energy gaps. A set of 68 various T-
S, Q-T, and Q-S gaps are shown plotted
against the fully variational RAS-nSF re-
sults.
While the data covers a wide magnitude
range, the SF-CAS-CI method provides a
reasonable description of the spin gaps.
However, upon inclusion of our perturba-
tive correction, the performance is greatly
enhanced for all PT methods, particularly
for the non-degenerate SF-CAS(h,p) and the quasidegenerate SF-CAS(h,p)1 methods.

Computational Cost
For n spin-Wips and MV virtual orbitals, the
largest CI dimension usually corresponds to
the particle states, consisting of (2n

n )(
2n

n−1)Mv
determinants. For a Vxed active space, RAS-
nSF requires a diagonalization of the full space
which scales as O(M2

v) for a σ vector forma-
tion. SF-CAS(h,p)n requires only 1-2 matrix

multiplications costing only O(Mv) each. Of course, both methods still scale factorially
with active space.

RAS-SF SF-CAS(h,p) SF-CAS(h,p)0 SF-CAS(h,p)1
Time(s) 45935 47 57 68
Time/State(s) 4594 5 6 7
Iterations 156* – – –
Singlet (meV) 0.00 0.00 0.00 0.00
Triplet (meV) 0.87 0.99 1.09 1.09
Quintet (meV) 2.61 2.98 3.29 3.29
Heptet (meV) 5.23 5.97 6.59 6.59

Future Issues
For several spin-Wips, the factorially increasing coeXcient in front of the above scalings
will dominate. In the large molecule limit (few spin-Wips), the evaluation of the 2e integrals
becomes the bottleneck.

Large Molecule Large Active Space
RAS-SF Scaling O(N4) O(N2) ∗ Cact
SF-CAS(h,p)n Scaling O(N3) O(N1) ∗ Cact
SF-CAS(h,p)n Algorithm 3 Exact Diag ofHAA′ 7 Davidson Diag ofHAA′

Improvements needed Parallelize (underway) Convert to matrix-vector
algorithm
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