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The problem of empirically optimizing a code can be posed as the mathematical optimization problem: For search algorithms, only certain regions of the 1850 A 0o v g 0880000 80, o8 o ©
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*Often stochastic/noisy (from measurement and/or run) a0l 1850 A% | | | . . « A necessary condition for x to be a non-dominated point on the energy-time Pareto front is
*Depends on machine and input size (or distribution over inputs) s - 6 6.2 6F.41 Timg.ezs) 6.8 7 2 (1) T (1)
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to-source or compiler-based transformation) . Three simultaneous objectives: Build time, binary size, and execution time
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