Charge form factor and sum rules of electromagnetic response functions in ¹²C

SUM RULES AND FORM FACTOR

The sum rules of the response functions provide a useful tool for studying integral properties of the electron-nucleus scattering $e^{+12} \to e' + X$.

By using the completeness relation, they can be expressed as ground-state expectation values of the charge and current operators.

 $S_{\alpha}(q) = C_{\alpha} \left[\langle 0 | O_{\alpha}^{\dagger}(\mathbf{q}) O_{\alpha}(\mathbf{q}) | 0 \right]$

The elastic contribution of the longitudinal sum rule, proportional to the charge form factor |F(q)|, describing the spatial distributions of electric charge inside the nucleus, is subtracted.

RESULTS

Longitudinal form factor

Two-body terms in the density operator bring theoretical prediction closer to experimental data in the high-momentum transfer tail.

Alessandro Lovato¹, Stefano Gandolfi², Ralph Butler³, Joseph Carlson², Ewing Lusk¹, Steven C. Pieper¹, Rocco Schiavilla⁴

1) Argonne National Laboratory, Argonne, IL 60439 2) Los Alamos, NM 87545 3) Tennessee State University, Murfreesboro, TN 37132 4) Old Dominion University, Norfolk, VA 23529

The electroweak response is a fundamental ingredient to describe the neutrino - 12-carbon scattering, recently measured by the MiniBooNE collaboration to calibrate the detector aimed at studying neutrino oscillations. As a first step toward its calculation, we have computed the sum rules for the electromagnetic response of ¹²C including two-body meson exchange currents. Moreover, this calculation can be used to predict the results of the upcoming experiment at Jefferson Laboratory, which are not yet released.

$$0\rangle - |\langle 0; \mathbf{q}| O_{\alpha}(\mathbf{q})|0\rangle|^2$$

GFMC algorithms use projection techniques to enhance the ground-state component of a starting trial wave function using <u>realistic NN+NNN interaction</u>. $|\Psi_0\rangle = \lim_{T \to \infty} e^{(\hat{H} - E_0)\tau} |\Psi_T\rangle$

• We conducted experiments to determine the best configuration of MPI processes per node and OpenMP threads per process for the sum rule calculations (4 ranks/ node, 16 threads/rank). • To perform this calculation we have used about 20 million hours of ALCF Early Science Program computing time.

electromagnetic form factors.

GREEN'S FUNCTION MONTE CARLO ON MIRA

 The calculation of the energy and of the response functions allows for splitting one sample over many processors.

- We ported GFMC, together with the ADLB loadbalancing library, to the 10-petaflop Mira computer at Argonne and demonstrated scaling to more than 250,000 MPI ranks with over 2 million threads.

to the one-body case is about 50%.

arXiv:1305.6959 [nucl-th]

— Actual			
—— Ideal			
¹² C – GFMC Weak scaling, 2	C+ADLB – B configs/rank	G/Q	putiget
			-
1,024	4,096 10 Number of MP	5,384 65	536 262,144
To	tal walltime / Co	onfigurations / 100% E	q-values ————————————————————————————————————
·			
512	2048 MPI rank	8192 s	32768

FUTURE WORK

 <u>Neutral current sum rules</u>, allowing for the description of neutrino scattering on ¹²C, are currently being implemented in the code.

 Euclidean electromagnetic and weak response functions will enable us to make a more direct comparison with data.

