

- Li Cathode
- Li-ion batteries are key components of consumer electronics and electric/hybrid-electric transportation technologies
- Solid-electrolyte interphase (SEI) is a product of electrolyte decomposition; important for stability but limits ion transport
- Understanding formation and composition of SEI important to improve performance and safety of Li-ion batteries

Computational Scaling & Code Improvements

Bulk Ethylene Carbonate (EC) Benchmark System

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported by the Department of Energy offices of Basic Energy Sciences (BES) and Advanced Scientific Computing Research (ASCR) through the Scientific Discovery through Advanced Computing (SciDAC) program.

Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular Dynamics: Lithium Ion Interface Dynamics from First Principles Mitchell T. Ong,¹ Vincenzo Lordi,¹ Erik W. Draeger,¹ John E. Pask¹ Chao Yang,² Lin Lin,² Mathias Jacquelin²

¹Lawrence Livermore National Laboratory, ²Lawrence Berkeley National Laboratory

Qbox Improvements

ASP	Qbox (old)	Qbox (improved)
50	584	178
42	112	107
1.2	5.2	1.7

• Qbox modified to perform self consistent cycle faster using Harris-Foulkes estimate for energy

• Enhanced performance when including empty states, important for metallic systems

Strong Scaling on Blue Gene/Q

65536

- 98 EC + 6 LiPF₆ + 4L-Graphite (H-
- terminated)
- 1700 atoms
- 6020 electrons
- 38.5 x 14.8 x 40.8Å
- 0.83 M LiPF₆
- Excellent scaling up to 65536 cores 1700 atoms in 40 sec/ MD step
- Run 10-40 ps/month

Project Goals

- Understand the reaction mechanisms and dynamics at the anode-electrolyte interface that lead to SEI formation and growth
- Examine the transport properties and solvation structures of Li ions in the bulk electrolyte and at the interface
- To achieve these goals, we perform massively parallel quantum molecular dynamics simulations at unprecedented time and length scales
- Enable design of new anode-electrolyte combinations for safe, reliable, high-capacity, high-charge rate batteries

Initial Results

Methods

• Quantum molecular dynamics (QMD) coupled with density functional theory (DFT) in VASP & Qbox

PBE/GGA exchange—correlation functional

• Projector augmented wave (PAW) method used in VASP; norm-conserving pseudopotentials used in **Qbox**

• NVT (canonical ensemble) used for equilibration

- **VASP**: Nose–Hoover thermostat
- **Qbox**: Berendsen velocity scaling thermostat

• NVE (microcanonical ensemble) used to collect statistics

Verlet algorithm using 0.5 fs time step

• Future QMD runs will use Discontinuous Galerkin density functional theory (DGDFT) code currently in development

- Local, systematically improvable basis set
- Enables scaling to system sizes of ~10,000+ atoms

L. Lin, et al., J. Comput. Phys., 2012, 231(4): 2140-2154 L. Lin, et al., J. Comput. Phys., 2012, 231(13): 4515-4529 L. Lin, et al., Phys. Rev. B, 2012, 85(23): 235144

Next Steps

1) Larger bulk electrolyte systems inspired by experiments

- Different electrolytes and salts
- Effect of salt concentration and temperature
- Finite size effects

2) Anode + Electrolyte

- Important chemical reactions that lead to SEI formation
- Examine the effect of different anode materials
- Investigate the effect of liquid environment
- Simulations of ~10,000+ atoms with new DGDFT code

Summary

VASP faster for smaller systems, Qbox scales better for larger systems

Qbox sped up by factor of three for metallic systems

Excellent scaling of Qbox on Vulcan (BG/Q) system; timings show best performance for 1 MPI task/node using all OpenMP threads

Consistency between VASP & Qbox in structural properties for bulk EC

Separated LiPF₆ results in more carbonyl oxygen atoms around the Li⁺ ion in the first solvation shell than when cation and anion are together

Li⁺ diffusivity 2-3x faster when LiPF₆ dissociates in solvent