
FASTMath Direct Solver Technologies 

We	  are	  developing	  scalable	  sparse	  direct	  linear	  solvers	  and	  effec3ve	  precondi3oners	  for	  the	  most	  challenging	  linear	  systems,	  which	  are	  o:en	  too	  difficult	  for	  itera3ve	  methods.	  Our	  
focal	  effort	  is	  the	  development	  of	  three	  types	  of	  linear	  solvers:	  	  The	  first	  is	  a	  pure	  direct	  solver,	  encapsulated	  in	  SuperLU_DIST	  so:ware.	  The	  second	  is	  a	  Schur	  complement-‐based	  hybrid	  
solver,	   ,	   encapsulated	   in	   PSDLin	   so:ware.	   The	   third	   type	   is	   the	   nearly-‐op3mal	   precondi3oners	   using	   low-‐rank	   approximate	   factoriza3on	   of	   the	   dense	   submatrices.	  We	   are	   also	  
developing	  communica3on-‐avoiding	  linear	  algebra	  algorithms	  which	  have	  the	  poten3al	  to	  be	  used	  in	  the	  above	  sparse	  linear	  solvers.	  

More Information: http://www.fastmath-scidac.org or contact Lori Diachin, LLNL, diachin2@llnl.gov, 925-422-7130 
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Parallel HSS Low Rank Factorization 

Communication Avoiding Linear Algebra 

Objectives 
•  Develop scalable sparse direct linear solvers that are essential for simulations of 

numerically challenging problems, e.g., accelerator, fusion, quantum chemistry, 
and fluid mechanics. 

•  Enhance performance of SuperLU with better utilization of new hardware 
resources, such as systems with many nodes and many cores per node. 

Recent Accomplishments 
•  Implemented new static scheduling and flexible look-ahead algorithms that 

reduced the processors’ idle time and shortened the length of the critical path.  
The parallel factorization is improved nearly 3x on thousands of cores. 

•  Introduced light-weight OpenMP threads in MPI processes.  Significantly reduced 
memory footprint (up to 2x), and enabled use of all cores per NUMA node. 

•  In SuperLU_DIST 3.3 release, March 2013 

 
 
 
 
 
 
 
 
Impact 
•  There were over 24,000 downloads of SuperLU in FY2012.  It is an indispensable 

kernel solver in DOE simulation codes, such as M3D-C1, NIMROD, and Omega3P. 
It is adopted in many commercial mathematical libraries and simulation 
software, including AMD (circuit simulation), Boeing (aircraft design), Chevron 
(geology), Cray's LibSci, FEMLAB, HP's MathLib, IMSL, NAG, OptimaNumerics, 
Python (SciPy), Walt Disney Feature Animation. Performance-enhanced SuperLU 
will be leveraged by large base of simulation codes. 

•  Explore general optimization techniques, challenged by irregular data access, 
high degree of task & data dependency (DAG), and complex communication 
patterns. Techniques are applicable to other irregular applications with similar 
DAG features. 

Future Plans 
•  Aggregate blocks to enable use of multithreaded BLAS on multicore node and 

batch GEMMs on GPU 
•  More OpenMP enhancement for the remaining code 
References 
•  I. Yamazaki and X.S. Li, “New Scheduling Strategies for a Parallel Right-looking Sparse LU 

Factorization Algorithm on Multicore Clusters”, IPDPS 2012, Shanghai,  May 21-25, 2012.  

Objectives 
•  Develop a hybrid direct+iterative solver, Parallel Domain decomposition Schur 

complement based linear solver, which achieves better scalability than direct 
solver and more robust than iterative solver. 
•  graph partitioning is used to obtain subdomains 
•  subdomains are solved by a parallel direct solver 
•  Schur complement system is solved by a preconditioned iteration solver. No 

need to form Schur complement explicitly 
•  It is crucial to employ two levels of parallelism to maintain scalability as well as 

numerical robustness with increasing core count.  

 
 
 
Recent Accomplishments 
•  Made the first release (version 1.0) in May 2012, has been stabilizing the code. 
•  Investigated some combinatorial algorithms to enhance PDSLin’s performance. 

These have led to 30-60% reduction in runtime. 
•  Used graph and hypergraph algorithms for the multi-constraint partitioning 

problem to balance the workload while computing the preconditioner in 
parallel. 

•  Developed a new ordering algorithm to reorder the sparse right-hand side 
vectors to improve the data access locality during the parallel solution of a 
sparse triangular system with many right-hand sides. 

•  Applied PDSLin to the linear systems from the magnetic reconnection problem 
in the plasma fusion simulation and demonstrated that PDSLin is scalable to 
thousands of processors while maintaining the same robustness as a direct 
solver (see Fig. 3) 

Future Plans 
•  Investigate various parallel preconditioners for the Schur complement systems 
•  Multicore enhancement 
References 
•  I. Yamazaki and X.S. Li, “On techniques to improve robustness and scalability of the Schur 

complement method”, VECPAR'10, June 22-25, 2010, Berkeley. 
•  X. Yuan, X.S. Li, I. Yamazaki, S.C. Jardin, A.E. Koniges, and D.E. Keyes, “Application of PDSLin 

to the magnetic reconnection problem'', IOP Journal of Computational Science & Discovery, Vol. 
6, No. 1, 2013. 

•  I. Yamazaki, X.S. Li, F.-H. Rouet, and B. Ucar, “On partitioning and reordering problems in a 
hierarchically parallel hybrid linear solver'’, PDSEC Workshop at IPDPS, 2013.  

Objectives 
•  Develop a new class of sparse approximate factorization algorithms that 

exploit the hidden data-sparseness via Hierarchically Semiseparable (HSS) 
representation, which has asymptotically lower complexity.  

 
 
Recent Accomplishments 
•  Developed the first parallel algorithms and code for HSS construction,  ULV 

HSS factorization, and HSS solution. 
•  Developed the first parallel HSS-structured sparse multifrontal code, 

demonstrated 2-3x faster than pure multifrontal for the Helmholtz 
equations on 16000+ cores. 

References 
•  S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving linear 

systems with hierarchically semiseparable matrices'’, SIAM SISC, Nov. 2012. (revised) 
•  S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric Multifrontal 

Solver Using Hierarchically Semiseparable Structure”, ACM TOMS, June 2013. (submitted) 

Objectives 
•  Develop a new class of parallel factorization algorithms that have 

asymptotically lower communication complexity than conventional ones. 
Recent Accomplishments 
•  New symmetric indefinite factorization LDLT, based on blocked Aasen, 

achieved up to 2.8x speedup over MKL on 48 core AMD Opteron. 
•  LU factorization with panel rank revealing pivoting. Improve stability of 

partial pivoting while minimizing communication. As stable as GEPP in 
practice, more resistant to pathological cases. 

•  New rank revealing QR with column pivoting and minimize communication. 
Uses tournament pivoting (originally invented for TSLU) to select pivots. 

•  Develop arithmetic lower bounds for non-Strassen-like 1-sided 
factorizations, which in turn give communication lower bounds. New lower 
bounds apply to general sparse and structured matrices, not just dense. 

References 
•  D. Becker, G. Ballard, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O. Schwartz, S. 

Toledo, I. Yamazaki, "Implementing a blocked Aasen's algorithm with a dynamic scheduler 
on multicore architectures”, IPDPS’13. (best paper) 

•  A. Khabou, J. Demmel, L. Grigori, M. Gu, “LU factorization with panel rank-revealing 
pivoting and its communication avoiding version”, to appear in SIMAX. 

•  J. Demmel, L. Grigori, M. Gu, H. Xiang, "Communication Avoiding Rank Revealing QR 
Factorization with Column Pivoting”, submitted to SIMAX. 

•  J. Demmel, “An arithmetic complexity lower bound for computing rational functions, with 
applications to linear algebra”, submitted to SIMAX. 

FASTMath Team Members: Jim Demmel (UC Berkeley), Sherry Li, Francois-Henry Rouet (Lawrence Berkeley National Laboratory) 

Factorization time improvement of V3.0 over V2.5.  Hopper at NERSC, Cray XE6  

Fig.1. Accelerator Omega3P, dimension 2.7 M  
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Fig.3. Fusion: magnetic reconnection  
         Dimension 4.2 M 
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Fig.2. DNA, dimension 445 K  


