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(1) Background and Motivation
The Initialization Problem
In order to conduct experiments about how the Antarctic and Greenland ice sheets could respond to changes in their environment, one needs to initialize the ice �ow model 
so that it realistically simulates how modern ice sheets maintain their current states of mass balance. However, observations of Greenland and Antarctic ice sheets do not 
completely constrain boundary conditions and other processes, particularly at the rock-ice (basal) and ocean-ice (lateral) interfaces. This lack of adequate observations and 
understanding means there can be multiple ways to construct and initialize an ice �ow model and maintain consistency with observations. A primary goal for PISCEES e�orts 
in uncertainty quanti�cation is to represent these sources of uncertainty within model predictions of future sea level.

Figure 1.1: Schematic of observations, 
boundary conditions, and processes 
a�ecting ice sheet initialization.
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Solution Strategies: Sampling- and Adjoint-based methods
We will use non-intrusive (sampling-based) and intrusive (adjoint-based) methods to identify an optimal ice �ow model initial state (velocities, temperatures, and thicknesses) 
and boundary conditions that minimize the distance to observations. These same methods can be used to seek the set of possible solutions around this optimal solution, given
uncertainties in the data constraints, the model, and ice �ow parameters. The impacts of these uncertainties on predictions of sea level can then be assessed through forward 
integrations with appropriate estimates of environmental forcing. The two approaches each have their strengths that address di�erent challenges to this task.
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Challenges
1. Sampling high dimensional parameter space uncertainties (e.g. 2d maps of 
 basal traction coe�cients, boundary conditions).
2. Data may be incompatible with model physics.
3. We assume steady state, although unlikely to be true.
4. Forcing from climate model contains long-term average errors (or “biases”) 
 within both the atmosphere and ocean models.

QUEST help with sampling-based solutions
1. Use DAKOTA to develop cheaply sampled surrogate ice sheet models, to 
 represent behavior of models at arbitary points in parameter space
2. Parameterize high dimensional unknowns with a few parameters. Not clear how 
 to do this for some boundary conditions such as topography and basal traction. 
 An example for surface mass balance is given in Section 2.
4. Include descrepancy term or scaling factor in log-likelihood to account for biases.
5. How to account for the lack of treatment of transients in solutions? 

MAP point

QUEST help with adjoint-based solutions
1. Adjoints are invaluable for �nding the MAP point, or optimal �t between the model and 
 observations (e.g., see Section 3). 
2. Derivative-based UQ seeks to exploit sensitivity (1st-derivative, or adjoint) and 
 geometric (2nd-derivative, curvature or Hessian) information. How best to do this is one 
 of our research goals, and we are exploring how best to make use of DAKOTA tools.
3. Adjoint-based UQ research is being conducted in the following three areas:
 i. inverse propagation: Combine parameter uncertainties and observation 
    uncertainties to estimate a quality of the �t of the model to observational data. 
 ii. derivative-enhanced sampling: Hessian eigenvectors are a close-to-optimal
     basis for sampling dominant uncertainties and reducing the space that describes
     what matters to science. This may help to address the “curse of dimensionality” and
     improve sampling e�ciency.
 iii. forward propagation: From a de�ned quantity of interest, adjoint and Hessian infor-
    mation links parameter, model, and data uncertainties to prediction uncertainties.

U : velocity
T : temperature
H : thickness
m : parameters

: boundry conditions
C 1 : inverse of covariance of errors

U, T, H | m,( ) initial state

Synthetic Application #1: Use DAKOTA for Uncertainty Propagation
Here we demonstrate the capacity to use DAKOTA to perform a forward propagation of uncertainties in a single parameter 
sliding law for a simple ice “dome” test problem. The dome problem has a single basal sliding coe�cent with a mean value 
of 1 and a sigma of 0.2 (KPa yr/m). DAKOTA managed 1000 samples run in Library mode (1 run of code = 1 setup cost).  The
result provides a PDF on model outputs (here, velocity) given uncertain parameter inputs.

Figure 2.1: Ice sheet “Dome Problem” geometry with
velocity in one dimension (coloring).

Figure 2.2: Forward propagation of uncertainty in
the “Dome Problem” given uncertainty in basal
sliding coe�cient. 

Synthetic Application #2: Use DAKOTA and QUESO for Bayesian Calibration
Here we demonstrate using the DAKOTA framework and the QUESO tool in collaboration with QUEST to conduct a Bayesian 
samping-based approach to initialize a dome ice sheet. Given observed velocities (here, synthetic model generated  “data”), 
we estimate a joint probability to select 4 parameters in a polynomial sliding law. Sampling-based approaches have to work in 
lower dimensions, although in many cases one may �nd a low-dimensional way to parameterize high-dimensional unknowns. 

Figure 2.3: “Dome Problem” Bayesian calibration of four param-
eters within an idealized distribution of basal sliding coe�cients.

(2) Sampling-Based Methods
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Initial Goals
1. Incorporate DAKOTA libraries into code base and implement test problems. (below)
2. Represent surface-mass balance boundary condition forcing errors and estimate their 
    impacts on predictions of sea-level rise using forcing from the Community Earth System 
   Model. (below)
3. Develop initialization strategies that re�ect Bayesian approaches to incorporating known 
   uncertainties. (ongoing)

Representing Boundary Condition Uncertainties
We focus here on representing uncertainties and biases in surface mass balance (SMB = accumulation minus 
ablation). While there are sophisticated observational and modeling e�orts aimed at estimating SMB, our science
experiments will generally rely on SMB as simulated in a global climate model, which can have sizable di�erences 
from more data-driven estimates. Our approach1 is to use the scatter that is present in short-term average SMB that 
will contain the imprint of individual weather events, rather than long-term climatological means, in order to rep-
resent the amplitude and spatial correlations that exist in modeled SMB biases. Because we hold these shorter-term 
averages constant, excessive accumulation or ablation can be ampli�ed as ice sheet growth or decay, in response to 
these anomalies, feeds back onto itself and ampli�es the errors. We have learned that the types of errors that exist in 
simulated SMB can create uncertainty of more than 100% in Greenland’s future contribution to sea level.
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Figure 2.4: (left) Surface Mass Balance (SMB) bias in one ensemble member taken from a 4-year mean of a 300 year long preindustrial control simulation. (center) SMB is applied to an ice �ow
model for 9000 years to equilibrate to the new SMB forcing. The excessive ablation occuring on the east and northeast sections result in an ice sheet that is more than 1 km below the average 
ensemble elevation. (right) With imposed changes to predicted climate out to 2100, the pattern of elevation change is similar to the anomalies that exist at 1850, meaning that all feedbacks 
amplify the original anomalies. 

Figure 2.5: Ensemble predictions of Greenland ice sheet contributions to sea level to 2100 given di�erent levels of uncertainties in SMB. Figure 2.6: Standard deviation in uncertainties in 
sea-level rise at 2100. 

(3) Progress Using Adjoint-Based Methods
Problem 1: Coupled Ice Sheet and Climate Model Initialization
A number of methods for optimizing uncertain ice sheet model parameters have been proposed and applied recently (e.g 2,3). One example2 is shown in Fig. 3.1, in which
modeled ice speeds (right) are compared to those from a target �eld (left). Despite the good match between the two, the �ux divergence implied by the model velocity �eld, 
shown in Fig. 3.2 (right), is noisy and unphysical. This presents a signi�cant problem for coupling between ice sheet models and climate models: in steady-state, the surface 

Figure 3.1: Depth-averaged ice speed for Greenland
based on observations (left) and from a tuned ice
sheet model2 (CISM) (Ice speeds are on a log10 scale).

mass balance (snow accumulation minus melting), provided by the 
climate model, should balance the �ux divergence. A sample surface 
mass balance �eld from a climate model is shown in Fig. 3.2 (left). The
di�erence between the two will lead to a “shock” to the ice sheet model
when it is coupled to the climate model and forced with realistic surface
mass balance. Evidence for such a shock can be seen in Fig. 3.3; the ice 
sheet volume initially grows in size. Even after 50 yrs the unphysical 
initial transient has not damped out. Non-physical initial transients of 
this type must be removed (or at least minimized) for coupled ice-sheet 
and climate model projections to be of use for sea-level rise projection.

Figure 3.2: Surface mass balance from the regional 
climate model RACMO4 (left) vs. the �ux divergence
calculated from the velocity �eld shown in the right
panel of Fig. 3.1. Colorbar is in units of m / yr.

A New Approach
Under DOE PISCEES, we are developing new methods for adjoint-based 
optimization6. The goal is to derive optimal ice sheet model initial 
conditions for coupled, forward model simultions, which avoid the
type of initalization “shock” shown in Figure 3.3.  
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Goal: Find an initial condition such that the ice sheet is at quasi-thermomechanical equalibrium with a given initial
geometry (from observations) and surface mass balance (from a climate model) and the mismatch between modeled
and observed velocities is minimized. Model parameters that are optimized include the 2d (x,y) �elds describing the
frictional basal sliding coe�cient,     , and the observed ice thickness, H, which has a speci�ed range of uncertainty.

At equilibrium:

�ux divergence

surface mass balance

Basal boundary condition:

Optimization Problem: Find     and H that minimize the cost functional    : 

Model depth-averaged velocity 
Ice thickness
Basal sliding coe�cient
Surface mass balance

- �ux div. vs. surf. mass bal. mismatch -

- model vs. observed velocity mismatch -

- model vs. observed thickness mismatch -

- regularization terms -

Figure 3.3: Drift in ice sheet mass balance (in units of m 
of cumulative sea-level rise) after initialization using two
di�erent control methods5.

The cost functional     is minimized under the constraint that velocities obey a 3d, 1st-
order approximation to the Stokes �ow equations with constant ice temperatures. 
Tikhonov regularization is applied to both     and H. Optimization, which uses the Moocho
package from Trilinos, applies Sequential Quadratic Programming and LBFGS for approx-
imating the reduced Hessian, in order to simultaneously reduce the residual of the con-
straint (the ice dynamics model) and the cost functional. First derviatives for the constraint 
and cost functional are provided by the LifeV �nite element library7.

Problem 2: Idealized Ice-Ocean Coupling Simulations
Adjoint-based approaches have also been used to perform time dependent (synthetic) data assimilation and sensitivity analysis for icealized, ice-ocean coupled simulations8,9. 

Results: Fig 3.4 shows the results for an idealized test case where     is initially speci�ed as a doubly-periodic “egg crate” pattern. Noise is then added to the forward modeled 
velocities and the calculated �ux divergence and treated as synthetic “data” for the optimization problem, which recovers the initial      �eld, albeit with some error. Fig. 3.5 shows 
the method applied to a realistic, coarse-resolution (20 km)  Greenland ice sheet problem, using observed ice sheet geometry and velocity �elds.

(a) (b) (c) (d) (e)

Figure 3.4: (left) top row: (b) Forward modeled velocity and (c)
�ux divergence for (a) speci�ed sliding coe�cient �eld. bottom 
row: (a) Recovered sliding coe�cient �eld when using noisy input
(e) velocities and (f ) surface mass balance as optimization inputs.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: (right) (a) Model �ux divergence compared with (b) target
surface mass balance for (c) basal sliding coe�cients recovered 
using realistic geometry and velocities for Greenland (compare the
model �ux divergence here with that shown in Figure 3.2 above). 
The modeled and target velocity �elds are shown in (d) and (e), 
respectively. Ice thickness uncertainty was held constant at 200 m. 

Figure 3.6: (left) Idealized ice-ocean coupled initial
condition8 showing ice sheet / shelf velocity (color)
and geomtry. The upstream boundary (x=0) rep-
resents grounded ice coupled to an ice sheet. The
ice begins to �oat by bouyancy near x=100 km.  

Figure 3.7: (right) Adjoint-diagnosed sensitivity of 
volume loss for the coupled system to submarine 
melting rates8. Counterintuitively, sensitivity is the 
greatest at margins (y~55-60, 90-95) rather than at 
the deepest part of the grounding line (x~110).

Figure 3.8: (right) Convergence of
optimization with data assimilation
when using a linearized adjoint
(dashed line) vs. when using an
adjoint that takes full account of
the nonlinear nature of the 
momentum balance for ice �ow8.
In the former case, convergence
is not always realized.
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