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Introduction

I Practical problems in uncertainty propagation,
sensitivity analysis, and inference require using
computationally expensive forward models, e.g., f (x)

I Standard algorithms require an intractable number of
evaluations

I Constructing surrogate f̃ (x) can lower the overall cost of
the analysis

Part 1: Forward uncertainty propagation

I Polynomial chaos expansions (PCEs) are used to
approximate functions of known random variables:

f̃ (x) =
∑

fiΨi(x)

I Ψ are orthonormal polynomials, fi are Fourier coefficients
I Customizable to various domains and measures
I Extends to higher dimensions via tensor products
I Adaptive Smolyak algorithms allow a flexible and

practical construction
I Well-suited to uncertainty propagation

Pseudospectral approximation in one dimension

I We can analytically compute coefficients:

f (x) ≈
∞∑
i=0

fiψ
1
i (x) =

∞∑
i=0

〈f (x), ψ1
i (x)〉ψ1

i (x)

I Pseudospectral approximations use quadrature to
compute the integral

S(1)
m (f ) =

q(1)(m)∑
i=0

Q(1)
m (f ψ

(1)
i )ψ

(1)
i (x)

I Choose truncation and quadrature so that every ψ2
i is

integrated correctly

Smolyak algorithms

I Smolyak approach builds sparse tensor product
algorithms from one-dimensional algorithms; good for
problems with weak input coupling

I Let

∆
(i)
0 = L

(i)
0 = 0

∆(i)
n = L(i)

n − L
(i)
n−1

I Form the telescoping sum

L(i) =
∞∑
ki=0

∆
(i)
k

I Smolyak’s algorithm is

A(m, d ,~L) :=
∑
k∈K

∆
(1)
k1
⊗ · · · ⊗∆

(d)
kd

I or:
A(K, d ,~L) =

∑
k∈K

ckL
1
k1 ⊗ · · · ⊗ Ldkd

Adaptivity

I Smolyak algorithms are more efficient only if the index
set is suited to the problem at hand

I Add indices incrementally, based on empirical local error
indicator

ε(k) := ‖∆1
k1 ⊗ · · · ⊗∆d

kd‖2

where ∆1
k1
⊗ · · · ⊗∆kd is a PCE and ‖ · ‖2 is a L2 norm

over the input space
I Halt adaptation with a global error indicator

εg :=
∑

εl(k)

Example of adaptivity

I A fabricated example in an exponential growth Gaussian
quadrature setting
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Termination critera

I The global error indicator is typically well-correlated with
L2 error, except for non-smooth functions
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Oscillatory
Product Peak
Corner Peak
Gaussian
Continuous
Discontinuous
Kinetics

Combustion model example

I Model computes the ignition time of a methane/air
mixture, based on 14 uncertain input rate parameters

I Testing adaptive and non-adaptive strategies with
different growth rules
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Non−Adaptive
Lin. Gauss
Exp. Gauss
Gauss−Patterson
Clenshaw−Curtis

Part 2: Inference and inverse problems

Adaptive local approximations
I When performing inference, it is difficult to efficiently

choose distributions for input parameters to build a PCE

Prior contours

Posterior contours

I This example shows how the samples are largely drawn
from regions of low posterior mass

I Instead, we aim to build an approximation that is
accurate over the posterior

I Samples might be allocated as shown, drawn with density
similar to the posterior density

I These samples may be used to construct local linear or
quadratic approximations

Algorithm outline

I On each iteration, when Markov chain Monte Carlo
needs to evaluate the approximate forward model,
construct/update the approximation as follows

Return
QB(x∗,R)(x

∗)

Need
f̃(x∗)

Accept/reject ε(x∗)Run f(x+),
Create SN+1

Select x+

Construct best surrogate using only SN

Optimize over R using penalized ε(x∗)

Select
B(x∗,R) ⊆ SN

Construct
QB(x∗,R)(x)

Estimate Error
ε(x∗)

Genetic toggle switch

I Infer six parameters of a kinetic model simulating a
genetic toggle switch
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I Test performance by performing inference repeatedly,
with or without approximations
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True model

Linear tol=10−1

Linear tol=10−1/2

Quadratic tol=10−1

Quadratic tol=10−1/2

PCE 100 sec

PCE 101 sec

PCE 102 sec

PCE 103 sec

Conclusions

I Uncertainty quantification tasks can be made tractable
with surrogates

I Adaptive polynomial approximations are well-suited to
uncertainty propagation

I Novel surrogates can exploit the structure of inference
problems
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