Adaptive approximations of computationally intensive models for uncertainty propagation and inference Patrick R. Conrad and Youssef M. Marzouk

Introduction

- Practical problems in uncertainty propagation, sensitivity analysis, and inference require using computationally expensive forward models, e.g., $f(\mathbf{x})$
- Standard algorithms require an intractable number of evaluations
- \blacktriangleright Constructing surrogate $\tilde{f}(\mathbf{x})$ can lower the overall cost of the analysis

Part 1: Forward uncertainty propagation

Polynomial chaos expansions (PCEs) are used to approximate functions of known random variables:

$$\tilde{f}(x) = \sum f_i \Psi_i(x)$$

- \blacktriangleright Ψ are orthonormal polynomials, f_i are Fourier coefficients
- Customizable to various domains and measures
- Extends to higher dimensions via tensor products
- Adaptive Smolyak algorithms allow a flexible and practical construction
- Well-suited to uncertainty propagation

Pseudospectral approximation in one dimension

We can analytically compute coefficients:

$$f(x) pprox \sum_{i=0}^{\infty} f_i \psi_i^1(x) = \sum_{i=0}^{\infty} \langle f(x), \psi_i^1(x) \rangle \psi_i^1(x)$$

Pseudospectral approximations use quadrature to compute the integral

$$\mathcal{S}_m^{(1)}(f) = \sum_{i=0}^{q^{(1)}(m)} \mathcal{Q}_m^{(1)}(f\psi_i^{(1)})\psi_i^{(1)}(x)$$

 \blacktriangleright Choose truncation and quadrature so that every ψ_i^2 is integrated correctly

Smolyak algorithms

- Smolyak approach builds sparse tensor product algorithms from one-dimensional algorithms; good for problems with weak input coupling
- Let

$$\Delta_0^{(i)} = L_0^{(i)} = 0$$
$$\Delta_n^{(i)} = L_n^{(i)} - L_{n-1}^{(i)}$$

Form the telescoping sum

$$L^{(i)} = \sum_{k_i=0}^{\infty} \Delta_k^{(i)}$$

Smolyak's algorithm is

$$A(m, d, \vec{L}) := \sum_{\mathbf{k} \in \mathcal{K}} \Delta^{(1)}_{\mathbf{k}_1} \otimes \cdots \otimes \Delta^{(d)}_{\mathbf{k}_d}$$

l or:

$$\mathsf{A}(\mathcal{K}, d, \vec{L}) = \sum_{\mathbf{k} \in \mathcal{K}} c_{\mathbf{k}} L^{1}_{\mathbf{k}_{1}} \otimes \cdots \otimes L^{d}_{\mathbf{k}_{d}}$$

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

Adaptivity

- Smolyak algorithms are more efficient only if the index set is suited to the problem at hand
- ► Add indices incrementally, based on empirical local error indicator

$$\epsilon(\mathbf{k}) := \|\Delta^1_{\mathbf{k}_1} \otimes \cdots \otimes \Delta^d_{\mathbf{k}_d}\|_2$$

where $\Delta^1_{\mathbf{k}_1} \otimes \cdots \otimes \Delta_{\mathbf{k}_d}$ is a PCE and $\|\cdot\|_2$ is a L_2 norm over the input space

► Halt adaptation with a global error indicator

$$\epsilon_{g} := \sum \epsilon_{l}(\mathbf{k})$$

Example of adaptivity

A fabricated example in an exponential growth Gaussian quadrature setting

Termination critera

The global error indicator is typically well-correlated with L^2 error, except for non-smooth functions

Combustion model example

Model computes the ignition time of a methane/air mixture, based on 14 uncertain input rate parameters Testing adaptive and non-adaptive strategies with different growth rules

----- Non-Adaptive

Part 2: Inference and inverse problems

Number of Evaluation

Adaptive local approximations

When performing inference, it is difficult to efficiently choose distributions for input parameters to build a PCE

This example shows how the samples are largely drawn accurate over the posterior

Conclusions

- Uncertainty quantification tasks can be made tractable with surrogates
- Adaptive polynomial approximations are well-suited to uncertainty propagation
- Novel surrogates can exploit the structure of inference problems

Prior contours

from regions of low posterior mass Instead, we aim to build an approximation that is

Genetic toggle switch

Algorithm outline

On each iteration, when Markov chain Monte Carlo needs to evaluate the approximate forward model, construct/update the approximation as follows

► Infer six parameters of a kinetic model simulating a genetic toggle switch

► Test performance by performing inference repeatedly, with or without approximations

